Skip to main content

Advertisement

Log in

Embryogenesis and synthetic seed production in Mondia whitei

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

An effective plant regeneration system via somatic embryogenesis and synthetic seeds was developed for Mondia whitei, an endangered medicinal plant. Friable embryogenic callus was induced by culturing leaf explants on solid Murashige and Skoog (MS) medium containing various concentrations and combinations of sucrose and plant growth regulators. The highest frequency of somatic embryogenesis (100 %) and production of all developmental stages of somatic embryos were obtained on MS medium with 40 g l−1 sucrose, 8 g l−1 agar, 20 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 1 μM thidiazuron. This was followed by establishment in MS medium with 20 g l−1 sucrose, 8 g l−1 agar, 0.5 μM meta-topolin riboside (mTR) and 0.25 μM indole-3-acetic acid (IAA). All the embryos germinated and produced healthy plantlets on the same medium. Somatic embryos at the heart, torpedo and cotyledonary-stages were collected from media (EDM) containing MS medium plus 20 g l−1 sucrose, 8 g l−1 agar, 0.5 μM mTR and 0.25 μM IAA. The embryos were encapsulated with liquid MS medium plus different concentrations of sodium alginate (SA) and calcium chloride (CaCl2·2H2O) with a 10 min exposure. A combination of 3 % SA and 100 mM CaCl2·2H2O provided higher survival (95.7 %) and germination (73 %) frequencies of synthetic seeds. Germination frequency of synthetic seeds was 51.6 % after 50 days of storage at 4 °C. Somatic embryos and synthetic seed-developed plantlets were successfully acclimatized in the greenhouse with 90 % survival ex vitro. Application of the protocol provides a relatively simple and rapid system for conservation of natural populations for germplasm conservation. Analysis of bioactive compounds and genetic transformation studies can also be performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

BA:

6-Benzyladenine

EDM:

Embryo development medium

FEC:

Friable embryogenic callus

IAA:

Indole-3-acetic acid

Kin:

Kinetin

MS:

Murashige and Skoog medium

mTR:

6-(-3-Hydroxybenzylamino)-9-β-D-ribofuranosylpurine

NAA:

α-Naphthaleneacetic acid

PGRs:

Plant growth regulators

PPF:

Photosynthetic photon flux

SA:

Sodium alginate

SEs:

Somatic embryos

TDZ:

Thidiazuron

References

  • Aremu AO, Bairu MW, Doležal K, Finnie JF, Van Staden J (2012) Topolins: a panacea to plant tissue culture challenges? Plant Cell Tissue Organ Cult 108:1–16

    Article  CAS  Google Scholar 

  • Baskaran P, Van Staden J (2014) Plant regeneration via somatic embryogenesis in Drimia robusta. Plant Cell Tissue Organ Cult 119:281–288

  • Baskaran P, Ncube B, Van Staden J (2012) In vitro propagation and secondary product production by Merwilla plumbea (Lindl.) Speta. Plant Growth Regul 67:235–245

    Article  CAS  Google Scholar 

  • Bhojwani SS, Razdan MK (1996) Plant tissue culture: theory and practice. Elsevier, Amsterdam, pp 1–766

    Google Scholar 

  • Blakesley D, Al-Mazrooci S, Graham GH (1995) Cryopreservation of embryogenic tissue of sweet potato (Ipomea batatus): use of sucrose and dehydration of cryoprotection. Plant Cell Rep 15:259–263

    CAS  PubMed  Google Scholar 

  • Bunel V, Hamel M, Duez P, Stevigny C (2014) Artifactual generation of an alkaloid in the course of Mondia whitei (Hook.f.) Skeels roots extraction: a clue to endogenous-formed bioactive compounds? Phytochem Lett 10:101–106

    Article  CAS  Google Scholar 

  • Cheruvathur MK, Kumar GK, Thomas TD (2013) Somatic embryogenesis and synthetic seed production in Rhinacanthus nasutus (L.) Kurz. Plant Cell Tissue Organ Cult 113:63–71

    Article  CAS  Google Scholar 

  • Deo PC, Taylor M, Harding RM, Tyagi AP, Becker DK (2010) Initiation of embryogenic cell suspensions of taro (Colocasia esculenta var. esculenta) and plant regeneration. Plant Cell Tissue Organ Cult 100:283–291

    Article  CAS  Google Scholar 

  • Dipti L, Fatima S, Mujib A (2014) Morphological anomalies in somatic embryo structure in Catharanthus roseus: improving embryo germination by amending plant growth regulators, activated charcoal and sucrose level. Br Biotechnol J 4:10–20

    Article  Google Scholar 

  • Fowler MW (1983) Commercial application and economic aspects of mass plant cell culture. In: Smith H, Mantell SH (eds) Plant Biotechnology. Cambridge University Press, Cambridge, pp 3–38

    Google Scholar 

  • Gelfand M, Mavi S, Drummond RB, Ndemera B (1985) The traditional medical practitioner in Zimbabwe. Mambo Press, Gweru, p 411

    Google Scholar 

  • Gerstner J (1941) A preliminary check list of Zulu names of plants with short notes. Bantu Stud 13:277–301

    Article  Google Scholar 

  • Ghosh B, Sen S (1994) Plant regeneration from alginate encapsulated somatic embryos of Asparagus cooperi Barker. Plant Cell Rep 13:381–385

    Article  CAS  PubMed  Google Scholar 

  • Ipekci Z, Gozukirmizi N (2003) Direct somatic embryogenesis and synthetic seed production from Paulownia elongate. Plant Cell Rep 22:16–24

    Article  CAS  PubMed  Google Scholar 

  • Janeiro LV, Ballester A, Vieitez AM (1997) In vitro response of encapsulated somatic embryos of camellia. Plant Cell Tissue Organ Cult 51:119–126

    Article  Google Scholar 

  • Karami O, Deljou A, Ashari ME, Ahmadi PO (2006) Effect of sucrose concentrations on somatic embryogenesis in carnation (Dianthus caryophyllus L.). Sci Hortic 110:340–344

    Article  CAS  Google Scholar 

  • Kitto SL, Janick J (1982) Polyox as an artificial seed coat for a sexual embryos. Hortic Sci 17:448

    Google Scholar 

  • Kokwaro JO (1976) Medicinal plants of East Africa. African Literature Bureau, Nairobi, p 384

    Google Scholar 

  • Krishna Kumar G, Thomas TD (2012) High frequency somatic embryogenesis and synthetic seed production in Clitoria ternatea Linn. Plant Cell Tissue Organ Cult 110:141–151

    Article  CAS  Google Scholar 

  • Malabadi R, Van Staden J (2005) Storability and germination of sodium alginate encapsulated somatic embryos derived from the vegetative shoot apices of mature Pinus patula trees. Plant Cell Tissue Organ Cult 82:259–265

    Article  CAS  Google Scholar 

  • Manjkhola S, Dhar U, Joshi M (2005) Organogenesis, embryogenesis, and synthetic seed production in Arnebia euchroma—a critically endangered medicinal plant of the Himalaya. In Vitro Cell Dev Biol Plant 41:244–248

    Article  Google Scholar 

  • Mathews H, Litz RE, Wilde HD, Merkle SA, Wetzstein HY (1992) Stable integration and expression of β-glucuronidase and NPT II genes in mango somatic embryos. In Vitro Cell Dev Biol Plant 28:172–178

    Article  Google Scholar 

  • McCartan SA, Crouch NR (1998) In vitro culture of Mondia whitei, a threatened Zulu medicinal plant. S Afr J Bot 64:313–314

    Google Scholar 

  • Merkle SA, Parrott WA, Flin BS (1995) Morphogenic aspect of somatic embryogenesis. Torpedoed in vitro embryogenesis in plant. Kluwer Academic Publishers, Dordrecht, pp 155–203

    Chapter  Google Scholar 

  • Murashige T (1977) Plant cell and organ cultures as horticultural practices. Acta Hortic 78:17

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Noumi E, Amvam ZPH, Lontsi D (1998) Aphrodisiac plants used in Cameroon. Fitoterapia 69:125–134

    Google Scholar 

  • Oketch-Rabah HA (2012) Mondia whitei, a medicinal plant from Africa with aphrodisiac and antidepressant properties: a review. J Diet Suppl 9:272–284

    Article  PubMed  Google Scholar 

  • Pattnaik S, Chand PK (2000) Morphogenic response of the alginate encapsulated axillary buds from in vitro shoot cultures of six mulberries. Plant Cell Tissue Organ Cult 60:177–185

    Article  Google Scholar 

  • Rai MK, Asthana P, Singh SK, Jaiswal VS, Jaiswal U (2009) The encapsulation technology in fruit plants—a review. Biotechnol Adv 27:671–679

    Article  PubMed  Google Scholar 

  • Redenbaugh K (1993) Synseeds: application of synthetic seeds for crop improvement. CRC Press, Boca Raton

    Google Scholar 

  • Redenbaugh K, Fujii JA, Slade D, Viss P, Kossler M (1991) Artificial seeds-encapsulated embryos. In: Bajaj YPS (ed) High technology and micropropagation I. Biotechnology in agriculture and forestry, vol 17. Springer, Berlin, pp 395–416

    Google Scholar 

  • Redenbaugh K, Paasch BD, Nichol JW, Kossler ME, Viss PR, Walker KA (1986) Somatic seeds: encapsulation of asexual plant embryos. Bio Technol 4:797–801

    Article  Google Scholar 

  • SANBI (2013) Statistics: red list of South African Plants version 2013.1. http://redlist.sanbi.org/stats.php

  • Siddiqui ZH, Mujib A, Maqsood M (2011) Liquid overlaying improves somatic embryogenesis in Catharanthus roseus. Plant Cell Tissue Organ Cult 104:247–256

    Article  Google Scholar 

  • Sudha CG, Seeni S (2006) Spontaneous somatic embryogenesis on in vitro root segment cultures of Rauvolfia micrantha hook. f.—a rare medicinal plant. In Vitro Cell Dev Biol Plant 42:119–123

    Article  Google Scholar 

  • Utomo HS, Wenefrida I, Meche MM, Nash JL (2008) Synthetic seed as a potential direct delivery system of mass produced somatic embryos in the coastal marsh plant smooth cordgrass (Spartina alterniflora). Plant Cell Tissue Organ Cult 92:281–291

    Article  CAS  Google Scholar 

  • Watcho P, Kamtchouing P, Sokeng SD, Moundipa PF, Tantchou J, Essame JL, Koueta N (2004) Androgenic effect of Mondia whitei roots in male rats. Asian J Androl 6:269–272

    PubMed  Google Scholar 

  • Wilde HD, Meagher RB, Merkle SA (1992) Expression of foreign genes in transgenic yellow-poplar plants. Plant Physiol 98:114–120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan F, Wang Q, Pan Q, Wang G, Zhao J, Tian Y, Tang K (2011) An efficient somatic embryogenesis based plant regeneration from the hypocotyl of Catharanthus roseus. Afr J Biotechnol 10:14786–14795

    CAS  Google Scholar 

Download references

Acknowledgments

The financial support by the National Research Foundation (NRF), Pretoria and the University of KwaZulu-Natal, Pietermaritzburg is gratefully acknowledged. The authors are grateful to the Microscopy and Microanalysis Unit (MMU), UKZN, Pietermaritzburg for microscopic assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Van Staden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baskaran, P., Kumari, A. & Van Staden, J. Embryogenesis and synthetic seed production in Mondia whitei . Plant Cell Tiss Organ Cult 121, 205–214 (2015). https://doi.org/10.1007/s11240-014-0695-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0695-x

Keywords

Navigation