Skip to main content
Log in

Somatic embryogenesis in cell suspension cultures of olive Olea europaea (L.) ‘Chetoui’

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Somatic embryogenesis of olive Olea europaea (L.) ‘Chetoui’ was studied using cell suspension cultures initiated from mature leaf-derived calli. Calli were developed on half-strength MS medium supplemented with 10 μM NAA and 2.25 μM 2i-P in the dark. Different combinations of three plant growth regulators (2,4-D, NAA and zeatin) were tested to determine cell proliferation and somatic embryogenesis induction and differentiation. Embryogenic suspension cultures were established in olive-modified medium for embryogenesis (OMe) containing 2.5 μM 2,4-D and 2.5 μM zeatin. Pre-globular and globular embryos were induced from mature olive tissue in liquid medium. In addition, the nitrogen form as inorganic (reduced; (NH4)2SO4 or oxidized; KNO3) and organic (CH) was used separately or in combination to improve the cell growth and proliferation. The most effective growth rate and cell proliferation were obtained with the medium containing inorganic and organic nitrogen forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

2i-P:

Isopentenyl adenine

2,4-D:

2,4-Dichlorophenoxyacetic acid

NAA:

Naphthaleneacetic acid

OM:

Olive medium (Rugini 1984)

OMc:

Olive-modified medium (Canas and Benbadis 1988)

OMe:

Olive-modified medium (Rugini and Caricato 1995)

References

  • Aderkas PV, Bonga JM (2000) Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment. Tree Physiol 20:921–928

    Google Scholar 

  • Amo-Marco JB, Vidal N, Vitez AM, Ballaster A (1993) Polypeptide markers differentiating juvenile and adult tissues in Chesnut. J Plant Physiol 142:117–119

    CAS  Google Scholar 

  • Benson EE (2000) In vitro plant recalcitrance. In Vitro Cell Dev Biol Plant 36:141–148

    Article  Google Scholar 

  • Binet MN, Lemoine MC, Martin C, Chambon C, Gianinazzi S (2007) Micropropagation of olive Olea europaea L. and application of mycorrhiza to improve plantlet establishment. In Vitro Cell Dev Biol Plant 43:473–478

    Article  CAS  Google Scholar 

  • Brito RM, Pellegrineschi A (2002) Effects of 2,4-dichlorophenoxyacetic acid and osmotic stresses on the establishment of cell suspension and plant regeneration in wheat Triticum aestivum L. In Vitro Cell Dev Biol Plant 38:1358

    Google Scholar 

  • Brittain H, Bowley SR, Mckersie BD (1998) Callus concentration regulates somatic embryo production in Orchard grass suspension cultures. In Vitro Cell Dev Biol Plant 34:281–285

    Article  Google Scholar 

  • Caboni E (2000) Adventitious shoot regeneration in woody fruit species. In: Developmental biology of regeneration, 1st meeting, 12–15 October 2000, Geisenheim, Germany, pp 64–65

  • Canas LA, Benbadis A (1988) In vitro plant regeneration from cotyledon fragments of the olive tree Olea europaea L. Plant Sci 54:65–74

    Article  CAS  Google Scholar 

  • Canas LA, Wyssmann AM, Benbadis MC (1987) Isolation, culture and division of olive Olea europaea L. protoplasts. Plant Cell Rep 6:369–371

    Article  Google Scholar 

  • Eady CC, Butler RC, Suo Y (1998) Somatic embryogenesis and plant regeneration from immature embryo culture of onion Allium sepa L. Plant Cell Rep 18:111–116

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Garcia E, Vergas TE, Oropeza M (2002) Establishment of an efficient system of somatic embryogenesis from cellular suspension of Solanum tuberosum (L.) ‘Désirée’ biochemical marker related with the processes. In Vitro Cell Dev Biol Plant 38:1372

    Google Scholar 

  • Georget F, Domergue R, Ferriere N, Cote FX (2000) Morpho-histological study of the different constituents of a banana Musa AAA, ‘Grande naine’ embryogenic cell suspension. Plant Cell Rep 19:748–754

    Article  Google Scholar 

  • Gomez MP, Segura J (1996) Morphogenesis in leaf and single-cell clusters of mature Juniperus oxycedrus. Tree Physiol 16:681–686

    PubMed  Google Scholar 

  • Hackett WP (1985) Juvenility, maturation, and rejuvenation in woody plants. Hort Rev 7:109–111

    Google Scholar 

  • Huang LC, Chow TY, Tseng TC, Kuo CI, Liu SM, Ngoh MG, Murashige T, Huang HG (2003) Association of mitochondrial plasmids with rejuvenation of the coastal redwood, Sequoia semperverens (D. Don). Endl Bot Bull Acad Sin 44:25–30

    CAS  Google Scholar 

  • Kaplan DR, Cooke TJ (1997) Fundamental concepts in the embryogenesis of dicotyledons: a morphological interpretation of embryo mutants. Plant Cell 9:1909–1919

    Article  Google Scholar 

  • Khan A, Chauchan YS, Roberts LW (1986) In vitro studies on xylogenesis in Citrus fruit vesicles. II. Effect of pH of the nutrient medium on the induction of cyto-differentiation. Plant Sci 46:213–216

    Article  Google Scholar 

  • Kim EY, Lee EK, Cho DY, Soh WY (2000) Relationship between auxin-induced cell proliferation and somatic embryogenesis in culture of carrot cotyledons. J Plant Biol 43:115–120

    Article  CAS  Google Scholar 

  • Kirby EG, Leustek T, Lee MS (1987) Nitrogen nutrition. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry, vol 3. Martinus Nijhoff Publishers, Dordrecht, The Netherlands, pp 67–88

    Google Scholar 

  • Kobayashi T, Higashi K, Sasaki K, Asami T, Yoshida S, Kamada H (2000) Purification from conditioned medium and chemical identification of a factor that inhibits somatic embryogenesis in carrot. Plant Cell Physiol 41:268–273

    Google Scholar 

  • Laux T, Jurgens G (1997) Embryogenesis: a new start in life. Plant Cell 9:989–1000

    Article  CAS  PubMed  Google Scholar 

  • Leljak-Levanic D, Bauer N, Mihaljevic S, Jelaska S (2004) Somatic embryogenesis in pumpkin Cucurbita pepo L. control of somatic embryo development by nitrogen compounds. J Plant Physiol 161:229–236

    Article  CAS  PubMed  Google Scholar 

  • Leva A, Petruccelli R, Polsinelli L (2004) La multiplication végétative in-vitro de l’Olivier : du laboratoire à la production. Olivæ 101:18–26

    Google Scholar 

  • Liu JH, Xu X, Deng X (2003) Protoplast isolation, culture and application to genetic improvement of woody plants. Food Agric Environ 1:112–120

    Google Scholar 

  • Mauri PV, Manzanera JA, Marcote MM (2001) Cyclic somatic embryogenesis and scheme for multiplication of Quercus ilex L. Acta Hort 560:517–520

    CAS  Google Scholar 

  • Mavituna F, Buyukalaca S (1996) Somatic embryogenesis of pepper in bioreactors: a study of bioreactor type and oxygen-uptake rates. Appl Microbiol Biotechnol 46:237–333

    Article  Google Scholar 

  • Mencuccini M, Rugini E (1993) In vitro shoot regeneration from olive cultivar tissues. Plant Cell Tissue Organ Cult 32:283–288

    Article  CAS  Google Scholar 

  • Micheli M, Hafiz IA, Standardi A (2007) Encapsulation of in vitro-derived explants of olive Olea europaea (L.) ‘Moraiolo’. II. Effects of storage on capsule and derived shoots performance. Sci Hort 113:286–292

    Article  Google Scholar 

  • Monnier M (1990) Induction of embryogenesis in suspension culture. In: Pollard JW, Walker JM (eds) Method in molecular biology, Plant Cell Tissue Org Cult, vol 6. Humana Press, Clifton, pp 149–157

  • Mordhorst A, Voerman K, Hartog M, Meijer E, Went J, Koorneef M, Vreis S (1998) Somatic embryogenesis in Arabidopsis thaliana is facilitated by mutations in genes repressing meristematic cell divisions. Genetics 149:549–563

    CAS  PubMed  Google Scholar 

  • Msallem M (2002) Etude de la juvénilité chez l’Olivier Olea europaea L. Aspects morphologiques, anatomiques, physiologiques et moléculaires. Ph.D. thesis. Institut National Agronomique de Tunisise, Tunisia, p 219

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with Tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Peixe A, Raposo A, Lourenço R, Cardoso H, Macedo E (2007) Coconut water and BAP successfully replaced zeatin in olive Olea europaea L. micropropagation. Sci Hort 113:1–7

    Article  CAS  Google Scholar 

  • Pierik RLM (1990) Rejuvenation and micropropagation. In: Nijkamp HJJ, Van Der plas LHW, Van Aartrijk J (eds) Progress in plant cellular and molecular biology. Kluwer Academic Publishers, Dordrecht, pp 91–101

    Google Scholar 

  • Rugini E (1984) In vitro propagation of some olive Olea europaea (L.) sativa cultivars with different root ability and medium development using analytical data from developing shoots and embryos. Sci Hort 24:123–134

    Article  CAS  Google Scholar 

  • Rugini E, Caricato G (1995) Somatic embryogenesis and plant recovery from mature tissues of olive cultivars Olea europaea (L.) ‘Canino’ and ‘Moraiolo’. Plant Cell Rep 14:257–260

    Article  CAS  Google Scholar 

  • Rugini E, Fedeli E (1990) Olive Olea europaea L. As an oil seed crop. In: Bajaj YPS (ed) Biotechnology agriculture and forestry, vol 10: Legumes and oil seed crop. I. Springer, Berlin

    Google Scholar 

  • Rugini E, Gutiérrez-Pesce P (2006) Genetic improvement of olive. Pomolgia Croatica 12:44–74

    Google Scholar 

  • Sangwan RS, Sangwan-Norreel BS, Harada H (1997) In vitro techniques and plant morphogenesis: fundamental aspects and practical applications. Plant Biotechnol 14:93–100

    CAS  Google Scholar 

  • Smith DL, Krikorian AD (1990a) Somatic embryogenesis of carrot in hormone-free medium: external pH control over morphogenesis. Am J Bot 77:1634–1647

    Article  CAS  PubMed  Google Scholar 

  • Smith DL, Krikorian AD (1990b) Low external pH replaces 2,4-D in maintaining and multiplying 2,4-D-initiated embryogenetic cells of carrot. Physiol Plant 80:329–336

    Article  CAS  PubMed  Google Scholar 

  • Strosse H, Shoofs H, Panis B, Andre E, Reyniers K, Swennen R (2006) Development of embryogenic cell suspension from shoot meristematic tissue in banana and plantains (Musa spp.). Plant Sci 170:104–112

    Article  CAS  Google Scholar 

  • Yantcheva A, Valhova M, Atanassov AM (1998) Direct somatic embryogenesis and plant regeneration of carnation Dianthus caryophyllus L. Plant Cell Rep 18:1248–1253

    Article  Google Scholar 

  • Zhu YM, Hoshino Y, Nakano M, Takahashi E, Mii M (1997) Highly efficient system for plant regeneration from protoplasts of grape-vine Vitis vinifera L. through somatic embryogenesis by using embryogenic callus culture and activated charcoal. Plant Sci 123:151–157

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are most grateful to anonymous reviewers for the very useful comments in the improvement of the manuscript. Thanks are also due to Drs M. Ben Naceur, A. Ben Abdallah and A. Jemmali for the helpful discussion on somatic embryogenesis in woody plants. We also gratefully acknowledge the assistance of the technical staff of the Laboratory of Biotechnology and Plant Physiology in the National Institute of Agronomical Research of Tunisia and the National Institute of Olive of Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El Bahri Trabelsi.

Additional information

Communicated by S. Werbrouck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trabelsi, E.B., Naija, S., Elloumi, N. et al. Somatic embryogenesis in cell suspension cultures of olive Olea europaea (L.) ‘Chetoui’. Acta Physiol Plant 33, 319–324 (2011). https://doi.org/10.1007/s11738-010-0550-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-010-0550-6

Keywords

Navigation