Skip to main content
Log in

Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Recent developments and trends of sol-gel auto-combustion method for spinel ferrite nanomaterial synthesis are briefly discussed and critically analyzed. The analysis of various parameters of reaction which could be used for better understanding of synthesis process and control of microstructure and property of spinel ferrite nanopowder products was the main objective of this review article. Special attention was paid to variety of particle size and phase purity. For these purposes the correlation between complexant, oxygen balance and combustion process chemical additives, as well as heating mechanism and atmosphere, was established. These results are relevant from standpoints of both application and processing of ferrites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chavan S M, Babrekar M K, More S S, et al. Structural and optical properties of nanocrystalline Ni-Zn ferrite thin films. Journal of Alloys and Compounds, 2010, 507(1): 21–25

    Article  CAS  Google Scholar 

  2. Adam J D, Davis L E, Dionne G F, et al. Ferrite devices and materials. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 721–737

    Article  CAS  Google Scholar 

  3. Kulikowski J. Soft magnetic ferrites — development or stagnation? Journal of Magnetism and Magnetic Materials, 1984, 41(1–3): 56–62

    Article  CAS  Google Scholar 

  4. Harris V G, Geiler A, Chen Y, et al. Recent advances in processing and applications of microwave ferrites. Journal of Magnetism and Magnetic Materials, 2009, 321(14): 2035–2047

    Article  CAS  Google Scholar 

  5. Qu Y, Yang H, Yang N, et al. The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles. Materials Letters, 2006, 60(29–30): 3548–3552

    Article  CAS  Google Scholar 

  6. Kasapoglu N, Birsoz B, Baykal A, et al. Synthesis and magnetic properties of octahedral ferrite NixCo1 − x Fe2O4 nanocrystals. Central European Journal of Chemistry, 2007, 5(2): 570–580

    Article  CAS  Google Scholar 

  7. Cao S W, Zhu Y J, Cheng G F, et al. ZnFe2O4 nanoparticles: microwave-hydrothermal ionic liquid synthesis and photocatalytic property over phenol. Journal of Hazardous Materials, 2009, 171(1–3): 431–435

    Article  CAS  Google Scholar 

  8. Liu Y-L, Liu Z-M, Yang Y, et al. Simple synthesis of MgFe2O4 nanoparticles as gas sensing materials. Sensors and Actuators B: Chemical, 2005, 107(2): 600–604

    Article  Google Scholar 

  9. Ahmed T T, Rahman I Z, Rahman M A. Study on the properties of the copper substituted NiZn ferrites. Journal of Materials Processing Technology, 2004, 153–154: 797–803

    Article  Google Scholar 

  10. Valenzuela R. Magnetic Ceramics. 1st ed. Melbourne: Cambridge University Press, 3–23

  11. Mouallem-Bahout M, Bertrand S, Pena O. Synthesis and characterization of ZnxNi1 − x Fe2O4 spinels prepared by citrate precursor. Journal of Solid State Chemistry, 2005, 178(4): 1080–1086

    Article  CAS  Google Scholar 

  12. Gul I H, Ahmed W, Maqsood A. Electrical and magnetic characterization of nanocrystalline Ni-Zn ferrite synthesis by coprecipitation route. Journal of Magnetism and Magnetic Materials, 2008, 320(3–4): 270–275

    Article  CAS  Google Scholar 

  13. Zahi S, Hashim M, Daud A R. Synthesis, magnetic properties and microstructure of Ni-Zn ferrite by sol-gel technique. Journal of Magnetism and Magnetic Materials, 2007, 308(2): 177–182

    Article  CAS  Google Scholar 

  14. Košak A, Makovec D, Žnidaršič A, et al. Preparation of MnZnferrite with microemulsion technique. Journal of the European Ceramic Society, 2004, 24(6): 959–962

    Article  Google Scholar 

  15. Jiao X, Chen D, Hu Y. Hydrothermal synthesis of nanocrystalline Mx(Zn1 − x )Fe2O4 (M = Ni, Mn, Co; x = 0.40−0.60) powders. Materials Research Bulletin, 2002, 37(9): 1583–1588

    Article  CAS  Google Scholar 

  16. Takayama A, Okuya M, Kaneko S. Spray pyrolysis deposition of NiZn ferrite thin films. Solid State Ionics, 2004, 172(1–4): 257–260

    Article  CAS  Google Scholar 

  17. Thakur S, Katyal S C, Singh M. Structural and magnetic properties of nano nickel-zinc ferrite synthesized by reverse micelle technique. Journal of Magnetism and Magnetic Materials, 2009, 321(1): 1–7

    Article  CAS  Google Scholar 

  18. Sarangi P P, Vadera S R, Patra M K, et al. Synthesis and characterization of pure single phase Ni-Zn ferrite nanopowders by oxalate based precursor method. Powder Technology, 2010, 203(2): 348–353

    Article  CAS  Google Scholar 

  19. Balaji S, Kalai Selvan K, John Berchmans L, et al. Combustion synthesis and characterization of Sn4+ substituted nanocrystalline NiFe2O4. Materials Science and Engineering B, 2005, 119(2): 119–124

    Article  Google Scholar 

  20. Aruna S T, Mukasyan A S. Combustion synthesis and nanomaterials. Current Opinion in Solid State and Materials Science, 2008, 12(3–4): 44–50

    Article  CAS  Google Scholar 

  21. Randhawa B S, Dosanjh H S, Kumar N. Synthesis of lithium ferrite by precursor and combustion methods: A comparative study. Journal of Radioanalytical and Nuclear Chemistry, 2007, 274(3): 581–591

    Article  CAS  Google Scholar 

  22. Lee S-P, Chen Y-J, Ho C-M, et al. A study on synthesis and characterization of the core-shell materials of Mn1 − x ZnxFe2O4-polyaniline. Materials Science and Engineering B, 2007, 143(1–3): 1–6

    Article  CAS  Google Scholar 

  23. Sutka A, Mezinskis G, Pludons A, et al. Characterization of solgel auto-combustion derived spinel ferrite nano-materials. Power Engineering, 2010, 56(3–4): 254–259

    CAS  Google Scholar 

  24. Sutka A, Gross K A, Mezinskis G, et al. The effect of heating conditions on the properties of nano- and microstructured Ni-Zn ferrite. Physica Scripta, 2011, 83(2): 025601 (6 pages)

    Article  Google Scholar 

  25. Thant A A, Srimala S, Kaung P, et al. Low temperature synthesis of MgFe2O4 soft ferrite nanocrystallites. Journal of the Australian Ceramic Society, 2010, 46(1): 11–14

    CAS  Google Scholar 

  26. Nayak P K. Synthesis and characterization of cadmium ferrite. Materials Chemistry and Physics, 2008, 112(1): 24–26

    Article  CAS  Google Scholar 

  27. Shobana M K, Rajendran V, Jeyasubramanian K, et al. Preparation and characterisation of NiCo ferrite nanoparticles. Materials Letters, 2007, 61(13): 2616–2619

    Article  CAS  Google Scholar 

  28. Mallapur M M, Shaikh P A, Kambale R C, et al. Structural and electrical properties of nanocrystalline cobalt substituted nickel zinc ferrite. Journal of Alloys and Compounds, 2009, 479(1–2): 797–802

    Article  CAS  Google Scholar 

  29. Yue Z, Zhou J, Li L, et al. Effect of copper on the electromagnetic properties of Mg-Zn-Cu ferrites prepared by sol-gel autocombustion method. Materials Science and Engineering B, 2001, 86(1): 64–69

    Article  Google Scholar 

  30. Azadmanjiri J, Salehani H K, Barati M R, et al. Preparation and electromagnetic properties of Ni1 − x CuxFe2O4 nanoparticle ferrites by sol-gel auto-combustion method. Materials Letters, 2007, 61(1): 84–87

    Article  CAS  Google Scholar 

  31. Yue Z, Zhou J, Li L, et al. Synthesis of nanocrystalline NiCuZn ferrite powders by sol-gel auto-combustion method. Journal of Magnetism and Magnetic Materials, 2000, 208(1–2): 55–60

    Article  CAS  Google Scholar 

  32. Selvan R K, Augustin C O, Berchmans L J, et al. Combustion synthesis of CuFe2O4. Materials Research Bulletin, 2003, 38(1): 41–54

    Article  CAS  Google Scholar 

  33. Guo L, Shen X, Meng X, et al. Effect of Sm3+ ions doping on structure and magnetic properties of nanocrystalline NiFe2O4 fibers. Journal of Alloys and Compounds, 2010, 490(1–2): 301–306

    Article  CAS  Google Scholar 

  34. Gupta N, Verma A, Kashyap S C, et al. Dielectric behavior of spindeposited nanocrystalline nickel-zinc ferrite thin films processed by citrate-route. Solid State Communications, 2005, 134(10): 689–694

    Article  CAS  Google Scholar 

  35. Azadmanjiri J. Structural and electromagnetic properties of Ni-Zn ferrites prepared by sol-gel combustion method. Materials Chemistry and Physics, 2008, 109(1): 109–112

    Article  CAS  Google Scholar 

  36. de Biasi R S, Figueiredo A B S, Fernandes A A R, et al. Synthesis of cobalt ferrite nanoparticles using combustion waves. Solid State Communications, 2007, 144(1–2): 15–17

    Article  Google Scholar 

  37. Shukla R, Ningthoujam R S, Umare S S, et al. Decrease of superparamagnetic fraction at room temperature in ultrafine CoFe2O4 particles by Ag doping. Hyperfine Interactions, 2008, 184(1–3): 217–225

    Article  CAS  Google Scholar 

  38. Aphesteguy J C, Damiani A, DiGiovanni D, et al. Microwave-absorbing characteristics of epoxy resin composites containing nanoparticles of NiZn- and NiCuZn-ferrites. Physica B: Condensed Matter, 2009, 404(18): 2713–2716

    Article  CAS  Google Scholar 

  39. Atif M, Nadeem M, Grossinger R, et al. Studies on the magnetic, magnetostrictive and electrical properties of sol-gel synthesized Zn doped nickel ferrite. Journal of Alloys and Compounds, 2011, 509(18): 5720–5724

    Article  CAS  Google Scholar 

  40. Sutka A, Stingaciu M, Mezinskis G, et al. An alternative method to modify the sensitivity of p-type NiFe2O4 gas sensor. Journal of Materials Science, 2012, 47(6): 2856–2863

    Article  CAS  Google Scholar 

  41. Doroftei C, Rezlescu E, Rezlescu N, et al. Microstructure and humidity sensitive properties of MgFe2O4 ferrite with Sn and Mo substitutions prepared by selfcombustion method. Journal of Optoelectronics and Advanced Materials, 2006, 8(3): 1012–1015

    CAS  Google Scholar 

  42. Costa A C F M, Lula R T, Kiminami R H G A, et al. Preparation of nanostructured NiFe2O4 catalysts by combustion reaction. Journal of Materials Science, 2006, 41(15): 4871–4875

    Article  CAS  Google Scholar 

  43. Guo X, Qi Y, Li X, et al. Preparation, characteization and photocatlytic properties of nanometer zinc ferrite. Journal of University of Science and Technology Beijing, 2004, 11(5): 474–476

    CAS  Google Scholar 

  44. Airimioaei M, Ciomaga C E, Apostolescu N, et al. Synthesis and functional properties of the Ni1 − x MnxFe2O4 ferrites. Journal of Alloys and Compounds, 2011, 509(31): 8065–8072

    Article  CAS  Google Scholar 

  45. Hwang C-C, Tsai J-S, Huang T-H, et al. Combustion synthesis of Ni-Zn ferrite powder — influence of oxygen balance value. Journal of Solid State Chemistry, 2005, 178(1): 382–389

    Article  CAS  Google Scholar 

  46. Costa A C F M, Morelli M R, Kiminami R H G A. Combustion synthesis: Effect of urea on the reaction and characteristics of Ni-Zn ferrite powders. Journal of Materials Synthesis and Processing, 2001, 9(6): 347–352

    Article  CAS  Google Scholar 

  47. Mangalaraja R V, Ananthakumar S, Manohar P, et al. Initial permeability studies of Ni-Zn ferrites prepared by flash combustion technique. Materials Science and Engineering A, 2003, 355(1–2): 320–324

    Article  Google Scholar 

  48. Mangalaraja R V, Ananthakmar S, Manohar P, et al. Characterization of Mn0.8Zn0.2Fe2O4 synthesized by flash combustion technique. Materials Science and Engineering A, 2004, 367(1–2): 301–305

    Article  Google Scholar 

  49. Sertkol M, KŌseoglu Y, Baykal A, et al. Synthesis and magnetic characterization of Zn0.7Ni0.3Fe2O4 nano particles via microwave-assisted combustion route. Journal of Magnetism and Magnetic Materials, 2010, 322(7): 866–871

    Article  CAS  Google Scholar 

  50. Yu L, Cao S, Liu Y, et al. Thermal and structural analysis on the nanocrystalline NiCuZn ferrite synthesis in different atmospheres. Journal of Magnetism and Magnetic Materials, 2006, 301(1): 100–106

    Article  CAS  Google Scholar 

  51. Wu K H, Ting T H, Li M C, et al. Sol-gel auto-combustion synthesis of SiO2-doped NiZn ferrite by using various fuels. Journal of Magnetism and Magnetic Materials, 2006, 298(1): 25–32

    Article  CAS  Google Scholar 

  52. Hwang C-C, Tsai J-S, Huang T-H. Combustion synthesis of Ni-Zn ferrite by using glycine and metal nitrates — investigations of precursor homogeneity, product reproducibility, and reaction mechanism. Materials Chemistry and Physics, 2005, 93(2–3): 330–336

    Article  CAS  Google Scholar 

  53. Costa A C F M, Morelli M R, Kiminami R H G A. Microstructure and magnetic properties of Ni1 − x ZnxFe2O4 synthesized by combustion reaction. Journal of Materials Science, 2007, 42(3): 779–783

    Article  CAS  Google Scholar 

  54. George M, Mary John A, Nair S S, et al. Finite size effects on the structural and magnetic properties of sol-gel synthesized NiFe2O4 powders. Journal of Magnetism and Magnetic Materials, 2006, 302(1): 190–195

    Article  CAS  Google Scholar 

  55. Mukasyan A S, Epstein P, Dinka P. Solution combustion synthesis of nanomaterials. Proceedings of the Combustion Institute, 2007, 31(2): 1789–1795

    Article  Google Scholar 

  56. Patil J Y, Khandekar M S, Mulla I S, et al. Combustion synthesis of magnesium ferrite as liquid petroleum gas (LPG) sensor: Effect of sintering temperature. Current Applied Physics, 2012, 12(1): 319–324

    Article  Google Scholar 

  57. Hwang C C, Wu T Y, Wan J, et al. Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders. Materials Science and Engineering B, 2004, 111(1): 49–56

    Article  Google Scholar 

  58. Wu K H, Ting T H, Yang C C, et al. Effect of complexant/fuel on the chemical and electromagnetic properties of SiO2-doped Ni-Zn ferrite. Materials Science and Engineering B, 2005, 123(3): 227–233

    Article  Google Scholar 

  59. Hu P, Pan D, Wang X F, et al. Fuel additives and heat treatment effects on nanocrystalline zinc ferrite phase composition. Journal of Magnetism and Magnetic Materials, 2011, 323(5): 569–573

    Article  CAS  Google Scholar 

  60. Costa A C F M, Silva V J, Xin C C, et al. Effect of urea and glycine fuels on the combustion reaction synthesis of Mn-Zn ferrites: Evaluation of morphology and magnetic properties. Journal of Alloys and Compounds, 2010, 495(2): 503–505

    Article  CAS  Google Scholar 

  61. Verma S, Karande J, Patidar A, et al. Low-temperature synthesis of nanocrystalline powders of lithium ferrite by an autocombustion method using citric acid and glycine. Materials Letters, 2005, 59(21): 2630–2633

    Article  CAS  Google Scholar 

  62. Costa A C F M, Vieira D A, Silva V J, et al. Synthesis of the Ni-Zn-Sm ferrites using microwaves energy. Journal of Alloys and Compounds, 2009, 483(1–2): 37–39

    Article  CAS  Google Scholar 

  63. Salunkhe A B, Khot V M, Phadatare M R, et al. Combustion synthesis of cobalt ferrite nanoparticles — Influence of fuel to oxidizer ratio. Journal of Alloys and Compounds, 2012, 514: 91–96

    Article  CAS  Google Scholar 

  64. Costa A C F M, Leite A M D, Ferreira H S, et al. Brown pigment of the nanopowder spinel ferrite prepared by combustion reaction. Journal of the European Ceramic Society, 2008, 28(10): 2033–2037

    Article  CAS  Google Scholar 

  65. Kambale R C, Adhate N R, Chougule B K, et al. Magnetic and dielectric properties of mixed spinel Ni-Zn ferrites synthesized by citrate-nitrate combustion method. Journal of Alloys and Compounds, 2010, 491(1–2): 372–377

    Article  CAS  Google Scholar 

  66. Qiu J, Liang L, Gu M. Nanocrystalline structure and magnetic properties of barium ferrite particles prepared via glycine as a fuel. Materials Science and Engineering A, 2005, 393(1–2): 361–365

    Article  Google Scholar 

  67. Yue Z, Li L, Zhou J, et al. Preparation and characterization of NiCuZn ferrite nanocrystalline powders by auto-combustion of nitrate-citrate gels. Materials Science and Engineering B, 1999, 64(1): 68–72

    Article  Google Scholar 

  68. Liu C, Zou B, Rondinone A J, et al. Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings. Journal of the American Chemical Society, 2000, 122(26): 6263–6267

    Article  CAS  Google Scholar 

  69. Azadmanjiri J, Seyyed Ebrahimi S A, Salehani H K. Magnetic properties of nanosize NiFe2O4 particles synthesized by sol-gel auto combustion method. Ceramics International, 2007, 33(8): 1623–1625

    Article  CAS  Google Scholar 

  70. Xue H, Li Z, Wang X, et al. Facile synthesis of nanocrystalline zinc ferrite via self-propagating combustion method. Materials Letters, 2007, 61(2): 347–350

    Article  CAS  Google Scholar 

  71. Liu J, Zhang W, Guo C, et al. Synthesis and magnetic properties of quasi-single domain M-type barium hexaferrite powders via sol-gel auto-combustion: Effects of pH and the ratio of citric acid to metal ions (CA/M). Journal of Alloys and Compounds, 2009, 479(1–2): 863–869

    Article  CAS  Google Scholar 

  72. Waqas H, Qureshi A H. Influence of pH on nanosized Mn-Zn ferrite synthesized by sol-gel auto combustion process. Journal of Thermal Analysis and Calorimetry, 2009, 98(2): 355–360

    Article  CAS  Google Scholar 

  73. Yue Z, Guo W, Zhou J, et al. Synthesis of nanocrystalline ferrites by sol-gel combustion process: the influence of pH value of solution. Journal of Magnetism and Magnetic Materials, 2004, 270(1–2): 216–223

    Article  CAS  Google Scholar 

  74. Kapse V D, Ghosh S A, Raghuwanshi F C, et al. Nanocrystalline spinel Ni0.6Zn0.4Fe2O4: A novel material for H2S sensing. Materials Chemistry and Physics, 2009, 113(2–3): 638–644

    Article  CAS  Google Scholar 

  75. Kadu A V, Jagtap S V, Chaudhari G N. Studies on the preparation and ethanol gas sensing properties of spinel Zn0.6Mn0.4Fe2O4 nanomaterials. Current Applied Physics, 2009, 9(6): 1246–1251

    Article  Google Scholar 

  76. Vijaya Bhasker Reddy P, Ramesh B, Gopal Reddy C. Electrical conductivity and dielectric properties of zinc substituted lithium ferrites prepared by sol-gel method. Physica B: Condensed Matter, 2010, 405(7): 1852–1856

    Article  Google Scholar 

  77. Sreeja V, Vijayanand S, Deka S, et al. Magnetic and Mössbauer spectroscopic studies of NiZn ferrite nanoparticles synthesized by a combustion method. Hyperfine Interactions, 2008, 183(1–3): 99–107

    Article  CAS  Google Scholar 

  78. Deka S, Joy P A. Characterization of nanosized NiZn ferrite powders synthesized by an autocombustion method. Materials Chemistry and Physics, 2006, 100(1): 98–101

    Article  CAS  Google Scholar 

  79. Vivekanandhan S, Venkateswarlu M, Satyanarayana N. Effect of ethylene glycol on polyacrylicacid based combustion process for the synthesis of nano-crystalline nickel ferrite (NiFe2O4). Materials Letters, 2004, 58(22–23): 2717–2720

    Article  CAS  Google Scholar 

  80. Wu K H, Yu C H, Chang Y C, et al. Effect of pH on the formation and combustion process of sol-gel auto-combustion derived NiZn ferrite/SiO2 composites. Journal of Solid State Chemistry, 2004, 177(11): 4119–4125

    Article  CAS  Google Scholar 

  81. Costa A C F M, Tortella E, Morelli M R, et al. Effect of heating conditions during combustion synthesis on the characteristics of Ni0.5Zn0.5Fe2O4 nanopowders. Journal of Materials Science, 2002, 37(17): 3569–3572

    Article  CAS  Google Scholar 

  82. Toksha B G, Shirsath S E, Patange S M, et al. Structural investigations and magnetic properties of cobalt ferrite nanoparticles prepared by sol-gel auto combustion method. Solid State Communications, 2008, 147(11–12): 479–483

    Article  CAS  Google Scholar 

  83. Xiang J, Shen X, Meng X. Preparation of Co-substituted MnZn ferrite fibers and their magnetic properties. Materials Chemistry and Physics, 2009, 114(1): 362–366

    Article  CAS  Google Scholar 

  84. Zhang G, Li C, Cheng F, et al. ZnFe2O4 tubes: Synthesis and application to gas sensors with high sensitivity and low-energy consumption. Sensors and Actuators B: Chemical, 2007, 120(2): 403–410

    Article  Google Scholar 

  85. Xiang J, Shen X, Song F, et al. One-dimensional NiCuZn ferrite nanostructures: Fabrication, structure, and magnetic properties. Journal of Solid State Chemistry, 2010, 183(6): 1239–1244

    Article  CAS  Google Scholar 

  86. Zhang C-Y, Shen X-Q, Zhou J-X, et al. Preparation of spinel ferrite NiFe2O4 fibres by organic gel-thermal decomposition process. Journal of Sol-Gel Science and Technology, 2007, 42(1): 95–100

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gundars Mezinskis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sutka, A., Mezinskis, G. Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Front. Mater. Sci. 6, 128–141 (2012). https://doi.org/10.1007/s11706-012-0167-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-012-0167-3

Keywords

Navigation