Skip to main content
Log in

Synthesis of lithium ferrite by precursor and combustion methods: A comparative study

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The thermal decomposition of lithium hexa(carboxylato)ferrate(III) precursors, (Li3[Fe(L)6xH2O, L = formate, acetate, propionate, butyrate), has been carried out in flowing air atmosphere from ambient temperature upto 500 °C. Various physico-chemical techniques, i.e., TG, DTG, DTA, XRD, SEM, IR, Mössbauer spectroscopy, etc., have been employed to characterize the intermediates and end products. After dehydration, the anhydrous complexes undergo decomposition to yield various intermediates, i.e., lithium oxalate/acetate/propionate/butyrate, ferrous oxalate/acetate and α-Fe2O3 in the temperature range of 185–240 °C. A subsequent decomposition of these intermediates leads to the formation of nanosized lithium ferrite (LiFeO2). Ferrites have been obtained at much lower temperature (255–310 °C) as compared to conventional ceramic method. The same nano-ferrite has also been prepared by the combustion method at a comparatively lower temperature (400 °C) and in less time than that of conventional ceramic method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Licht, B. Wang, S. Ghosh, Science, 285 (1999) 1039.

    Article  CAS  Google Scholar 

  2. V. K. Sharma, J. O. Smith, F. J. Millero, Environ. Sci. Technol., 31 (1997) 2486.

    Article  CAS  Google Scholar 

  3. V. K. Sankaranarayanan, O. Prakash, R. P. Pant, M. Islam, J. Mag. Mag. Mater., 252 (2002) 7.

    Article  CAS  Google Scholar 

  4. R. B. Goldner, F. O. Arntz, G. Berera, T. E. Haas, G. Wei, K. K. Wong, P. C. Yu, Solid State Ionics, 617 (1992) 53.

    Google Scholar 

  5. L. Delaude, P. Laszlo, J. Org. Chem., 61 (1996) 6360.

    Article  CAS  Google Scholar 

  6. T. A. Hewston, B. L. Chamberland, J. Phys. Chem. Solids, 48 (1987) 97.

    Article  CAS  Google Scholar 

  7. R. J. Gummow, M. M. Thackeray, Mater. Res. Bull., 27 (1992) 327.

    Article  CAS  Google Scholar 

  8. J. R. Dahn, U. Von Sacken, M. W. Juzkow, H. Al-Janaby, J. Electrochem. Soc., 138 (1991) 2207.

    Article  CAS  Google Scholar 

  9. C. D. W. Jones, E. Rossen, J. R. Dahn, Solid State Ionics, 68 (1994) 65.

    Article  CAS  Google Scholar 

  10. J. N. Reimers, E. Rossen, C. D. Jones, J. R. Dahn, Solid State Ionics, 61 (1993) 335.

    Article  CAS  Google Scholar 

  11. J. N. Reimers, E. W. Fuller, E. Rossen, J. R. Dahn, J. Electrochem. Soc., 140 (1993) 3396.

    Article  CAS  Google Scholar 

  12. K. J. Rao, Perspectives in Solid State Chemistry, Narosa Publication House, New Delhi, 1995.

    Google Scholar 

  13. B. S. Randhawa, H. S. Dosanjh, M. Kaur, Ind. J. Eng. Mater. Sci., 12 (2005) 151.

    CAS  Google Scholar 

  14. C. N. R. Rao, J. Gopalkrishnan, New Directions in Solid State Chemistry, Cambridge University Press, U.K., 1997.

    Google Scholar 

  15. M. J. Ruthner, J. Phys., 7 (1997) CI–53.

    Google Scholar 

  16. A. I. Vogel, A Textbook of Quantitative Inorganic Analysis Including Elementary Instrumental Analysis, English Language Book Society and Longman, London, 1973.

    Google Scholar 

  17. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, John Wiley Intersci., 2nd ed., New York, 1970.

  18. J. R. Ferraro, R. Driver, W. R. Walker, W. Wozniak, Inorg. Chem., 6 (1967) 1586.

    Article  CAS  Google Scholar 

  19. F. Menil, J. Phys. Chem. Solids, 46 (1985) 763.

    Article  CAS  Google Scholar 

  20. P. K. Gallagher, C. R. Kurkjian, Inorg. Chem., 5 (1966) 214.

    Article  CAS  Google Scholar 

  21. E. Fluck, W. Kerler, W. Neuwirth, Angew. Chem., 2 (1963) 277.

    Article  Google Scholar 

  22. R. C. Mehrotra, R. Bohra, Metal Carboxylates, Academic Press, New York, 1983, p. 123.

    Google Scholar 

  23. D. E. Cox, G. Shirane, P. A. Flinn, S. L. Ruby, W. J. Takei, Phys. Rev., 132 (1963) 1547.

    Article  CAS  Google Scholar 

  24. S. S. Bellad, C. D. Lokhande, C. H. Bhosale, Ind. J. P. Appl. Phys., 35 (1997) 565.

    CAS  Google Scholar 

  25. W. Kundig, H. Bommel, G. Constabaris, R. H. Lindquist, Phys. Rev., 142 (1966) 327.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Randhawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randhawa, B.S., Dosanjh, H.S. & Kumar, N. Synthesis of lithium ferrite by precursor and combustion methods: A comparative study. J Radioanal Nucl Chem 274, 581–591 (2007). https://doi.org/10.1007/s10967-006-6924-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-006-6924-y

Keywords

Navigation