Skip to main content
Log in

An alternative method to modify the sensitivity of p-type NiFe2O4 gas sensor

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Our objective was to determine the role of cooling rate on gas-sensing properties of annealed nano-grained nickel ferrite (NiFe2O4). The sol–gel auto combustion method was used for the preparation of NiFe2O4. To estimate structural and microstructural features, X-ray diffraction, and scanning electron microscopy techniques were used. For gas-sensing measurements different volatile organic compounds (VOCs) were used as testing gases. To identify the contribution of the different sensing layer elements to the conduction, ac impedance spectroscopy (IS) measurements were performed. It was found that the sensors cooled with lower rate exhibited better sensing performance, due to increase of resistance. Overall, this article covers an alternative method for modifying nickel ferrite gas sensor sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sugimoto M (1999) J Am Ceram Soc 82(2):269. doi:10.1002/chin.199917300

    Article  CAS  Google Scholar 

  2. Zhao DL, Lv Q, Shen Zm (2009) J Alloy Compd 480:634. doi:10.1016/j.jallcom.2009.01.130

    Article  CAS  Google Scholar 

  3. Shahane GS, Kumar A, Arora M, Pant RP, Lal K (2010) J Magn Magn Mater 322:1015. doi:10.1016/j.jmmm.2009.12.006

    Article  CAS  Google Scholar 

  4. Rao BP, Rao KH (2003) J Mater Sci Lett 2:1607. doi:10.1023/A:1026392609970

    Article  Google Scholar 

  5. Bucko MM, Haberko K (2007) J Eur Ceram Soc 27:723. doi:10.1016/j.jeurceramsoc.2006.04.052

    Article  CAS  Google Scholar 

  6. Lee KH, Cho DH, Jeung SS (1997) J Mater Sci Lett 16:83. doi:10.1023/A:1018565220950

    Article  CAS  Google Scholar 

  7. Virden AE, O’Grady K (2006) J Appl Phys. doi:10.1063/1.2172892

  8. Kim DH, Zeng H, Ng TC, Brazel CS (2009) J Magn Magn Mater 321:3899. doi:10.1016/j.jmmm.2009.07.057

    Article  CAS  Google Scholar 

  9. Zheng H, Wang J, Lofland SE et al (2004) Science 303:661. doi:10.1126/science.1094207

    Article  CAS  Google Scholar 

  10. Zhang G, Li C, Cheng F, Chen J (2007) Sensor Actuat B Chem 120:403. doi:10.1016/j.snb.2006.02.034

    Article  Google Scholar 

  11. Zhuiykov S, Ono T, Yamazoe N, Miura N (2002) Solid State Ion 152–153:801. doi:10.1016/S0167-2738(02)00331-4

    Article  Google Scholar 

  12. Jiang Y, Song W, Xie C, Wang A, Zeng D, Hu M (2006) Mater Lett 60:1374. doi:10.1016/j.matlet.2005.11.032

    Article  CAS  Google Scholar 

  13. Li Z, Lai X, Wang H, Mao D, Xing C, Wang D (2009) J Phys Chem C 113:2792. doi:10.1021/jp8094787

    Article  CAS  Google Scholar 

  14. Chu X, Jiang D, Zheng C (2006) Mater Sci Eng B 129:150. doi:10.1016/j.mseb.2006.01.006

    Article  CAS  Google Scholar 

  15. Mukherjee K, Majumder SB (2009) J Appl Phys. doi:10.1063/1.3225996

  16. Darshane SL, Suryavanshi SS, Mulla IS (2009) Ceram Int 35:1793. doi:10.1016/j.ceramint.2008.10.013

    Article  CAS  Google Scholar 

  17. Satyanarayana ReddyKM, Manorama SV (2003) Mater Chem Phys 82:21. doi:10.1016/S0254-0584(03)00170-6

    Article  CAS  Google Scholar 

  18. Rezlescu N, Iftimie N, Rezlescu E, Doroftei C, Popa PD (2006) Sensor Actuat B Chem 114:427. doi:10.1016/j.snb.2005.05.030

    Article  Google Scholar 

  19. Liu YL, Wang H, Yang Y, Liu ZM, Yang HF, Shen GL, Yu RQ (2004) Sensor Actuat B Chem 102:148. doi:10.1016/j.snb.2004.04.014

    Article  Google Scholar 

  20. Xiangfeng C, Dongli J, Chenmou Z (2007) Sensor Actuat B Chem 123:793. doi:10.1016/j.snb.2006.10.020

    Article  Google Scholar 

  21. Kamble RB, Mathe VL (2008) Sensor Actuat B Chem 131:205. doi:10.1016/j.snb.2007.11.003

    Article  Google Scholar 

  22. Tianshu Z, Hing P, Jiancheng Z, Lingbing K (1999) Mater Chem Phys 61:192. doi:10.1016/S0254-0584(99)00133-9

    Article  CAS  Google Scholar 

  23. Liu YL, Liu ZM, Yang Y, Yang HF, Shen GL, Yu RQ (2006) Sensor Actuat B Chem 107:600. doi:10.1016/j.snb.2004.11.026

    Article  Google Scholar 

  24. Hankare PP, Jadhav SD, Sankpal UB, Patil RP, Sasikala R, Mulla IS (2009) J Alloy Compd 488:270. doi:10.1016/j.jallcom.2009.08.103

    Article  CAS  Google Scholar 

  25. Darshane S, Mulla IS (2010) Mater Chem Phys 119:319. doi:10.1016/j.matchemphys.2009.09.004

    Article  CAS  Google Scholar 

  26. Tao S, Gao F, Liu X, Sørensen OT (2000) Mater Sci Eng B 77:172

    Article  Google Scholar 

  27. Reddy CVG, Manorama SV, Rao VJ (2000) J Mater Sci Lett 19:775. doi:10.1023/A:1006716721984

    Article  CAS  Google Scholar 

  28. Kapse VD, Ghosh SA, Raghuwanshi FC, Kapse SD, Khandekar US (2009) Talanta 78:19. doi:10.1016/j.talanta.2008.10.031

    Article  CAS  Google Scholar 

  29. Mukherjee K, Majumder SB (2010) Talanta 81:1826. doi:10.1016/j.talanta.2010.03.042

    Article  CAS  Google Scholar 

  30. Satyanarayana L, Reddy KH, Manorama SV (2003) Sensor Actuat B Chem 89:62. doi:10.1016/S0925-4005(02)00429-X

    Article  Google Scholar 

  31. Gedam NN, Padole Pr, Rithe SK, Chaudhari GN (2009) J Sol Gel Sci Technol 50:296. doi:10.1007/s10971-009-1942-1

    Article  CAS  Google Scholar 

  32. Iftimie N, Rezlescu E, Popa PD, Rezlescu N (2006) J Optoelectron Adv M 8:1016

    CAS  Google Scholar 

  33. Kadu AV, Jagtap SV, Chaudhari GN (2009) Curr Appl Phys 9:1246. doi:10.1016/j.cap.2009.02.001

    Article  Google Scholar 

  34. Lee PY, Ishizaka K, Suematsu H, Jiang W, Yatsui K (2006) J Nanopart Res 8:29. doi:10.1007/s11051-005-5427-z

    Article  CAS  Google Scholar 

  35. Reddy KM, Satyanarayana L, Manorama SV, Misra RDK (2004) Mater Res Bull 39:1491. doi:10.1016/j.materresbull.2004.04.022

    Article  CAS  Google Scholar 

  36. Zhu H, Gu X, Zuo D, Wang Z, Wang N, Yao K (2008) Nanotechnology. doi:10.1088/0957-4484/19/40/405503

  37. Van-Uitert LG (1956) J Chem Phys 23:1883. doi:10.1063/1.1742468

    Article  Google Scholar 

  38. Lord H, Parker R (1960) Nature 188:929. doi:10.1038/188929a0

    Article  CAS  Google Scholar 

  39. Sutka A, Mezinskis G, Lagzdina S, Bebris G (2011) Adv Mat Res 222:263. doi:10.4028/www.scientific.net/AMR.222.263

    Article  Google Scholar 

  40. Shobana MK, Rajendran V, Jeyasubramanian K, Kumar NS (2007) Mater Lett 61:2616. doi:10.1016/j.matlet.2006.10.008

    Article  CAS  Google Scholar 

  41. Azadmanjiri J, Seyyed Ebrahimi SA, Salehani HK (2007) Ceram Int 33:1623. doi:10.1016/j.ceramint.2006.05.007

    Article  CAS  Google Scholar 

  42. Roy PK, Bera J (2008) J Mater Process Tech 197:279. doi:10.1016/j.jmatproc.2007.06.027

    Article  CAS  Google Scholar 

  43. Arshak K, Gaidan I (2006) Thin Solid Films 495:286. doi:10.1016/j.tsf.2005.08.298

    Article  CAS  Google Scholar 

  44. Ivanov P, Hubalek J, Malysz K, Prášek J, Vilanova X, Llobet E, Correig X (2004) Sensor Actuat B Chem 100:221. doi:10.1016/j.snb.2003.12.065

    Article  Google Scholar 

  45. Verma A, Goel TC, Mendiratta RG, Gupta RG (1999) J Magn Magn Mater 192:271. doi:10.1016/S0304-8853(98)00592-7

    Article  CAS  Google Scholar 

  46. Rezlescu N, Doroftei C, Rezlescu E, Popa PD (2006) Phys Stat Sol 203:306. doi:10.1002/pssa.200521043

    Article  CAS  Google Scholar 

  47. Kapse VD, Ghosh SA, Raghuwanshi FC, Kapse SD (2009) Mater Chem Phys 113:638. doi:10.1016/j.matchemphys.2008.08.017

    Article  CAS  Google Scholar 

  48. Iftimie N, Rezlescu E, Popa PD, Rezlescu N (2006) J Optoelectron Adv 8:1001

    CAS  Google Scholar 

  49. Moseley PT (1991) Sensor Actuat B Chem 3:167. doi:10.1016/0925-4005(91)80002-2

    Article  Google Scholar 

  50. Batoo KM (2011) Phys B 406:382. doi:10.1016/j.physb.2010.10.075

    Article  Google Scholar 

  51. Nitsch K (2011) Microelectron Reliab. doi:10.1016/j.microrel.2011.02.019

Download references

Acknowledgement

The study has been supported by the European Social Fund within the project of «Support for the implementation of doctoral studies at Riga Technical University».

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sutka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sutka, A., Stingaciu, M., Mezinskis, G. et al. An alternative method to modify the sensitivity of p-type NiFe2O4 gas sensor. J Mater Sci 47, 2856–2863 (2012). https://doi.org/10.1007/s10853-011-6115-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6115-2

Keywords

Navigation