Skip to main content

Advertisement

Log in

Compaction and Densification Characteristics of Iron Powder/Coal Fly Ash Mixtures Processed by Powder Metallurgy Technique

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present work elucidates the compaction and the densification behavior of iron powder and coal fly ash (CFA) mixtures during powder metallurgy (P/M) processing. The flowability and the compressibility characteristics of the starting materials were exhibited through Hausner ratio and Carr’s index. Morphological, elemental and crystallographic characterizations of the starting materials were carried out using scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy and x-ray diffraction investigations, respectively. The CFA of 0, 5, 10 and 15 wt.% was mixed with the iron powder through ball milling. Further, the cold compaction of the mixtures containing iron/CFA was performed in the hardened steel die using a uniaxial hydraulic press at pressures of 91 MPa, 138 MPa and 185 MPa, respectively. Subsequently, the preforms were sintered at 950, 1050 and 1150 °C in a tubular furnace under an inert atmosphere. The density of the preforms and the sintered pallets was estimated using weight to volume ratio and Archimedes method, respectively. The obtained mineralogy, morphology and physio-mechanical properties of the CFA are in good agreement with the ASTM standards. Further, the flowability and the compressibility characteristics of the starting materials rendered them suitable for processing through the P/M process. SEM analysis of the sintered pallets exhibited uniform distribution of CFA particulates in the iron matrix with clear and strong interfaces. An inverse effect of an increased amount of CFA inclusion has been observed on the green and sintered density of the composite. However, a linear influence of increased compacting pressure and sintering temperature has been observed on green and sintered densities, respectively. The magnitude of the green density achieved during cold compaction is considerably higher than that achieved during the sintering process. The obtained compaction data were successfully fitted using the Ge compaction equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Malakar, V. Pancholi, and V.V. Dabhade, Recrystallization and Strengthening Mechanism in Friction-Stir-Processed Al Powder Compacts, J. Mater. Eng. Perform., 2020, 29(5), p 3243–3252

    Article  CAS  Google Scholar 

  2. G.H. Majzoobi and K. Rahmani, Mechanical Characterization of Mg-B4C Nanocomposite Fabricated at Different Strain Rates, Int. J. Miner. Metall. Mater., 2020, 27(2), p 252–263

    Article  CAS  Google Scholar 

  3. K.S. Narasimhan, Sintering of Powder Mixtures and the Growth of Ferrous Powder Metallurgy, Mater. Chem. Phys., 2001, 67(1–3), p 56–65

    Article  CAS  Google Scholar 

  4. S.S. Razavi-Tousi, R. Yazdani-Rad, and S.A. Manafi, Effect of Volume Fraction and Particle Size of Alumina Reinforcement on Compaction and Densification Behavior of Al-Al2O3 Nanocomposites, Mater. Sci. Eng., A, 2011, 528(3), p 1105–1110

    Article  Google Scholar 

  5. A.R. Kannan, K.S. Pandey, and S. Shanmugam, Some Investigation on the Cold Deformation Behaviour of Sintered Iron-0.8% Carbon Alloy Powder Preforms, J. Mater. Process. Technol., 2008, 203(1–3), p 542–547

    Article  CAS  Google Scholar 

  6. S. Tiwari, P. Rajput, and S. Srivastava, Densification Behaviour in the Fabrication of Al-Fe Metal Matrix Composite Using Powder Metallurgy Route, Int. Sch. Res. Notices, 2012, 2012, p 1–8

    Google Scholar 

  7. J.M. Montes, F.G. Cuevas, J. Cintas, and Y. Torres, Powder Compaction Law for Cold Die Pressing, Granul. Matter, 2010, 12(6), p 617–627

    Article  Google Scholar 

  8. S. Huo, L. Xie, J. Xiang, S. Pang, F. Hu, and U. Umer, Atomic-Level Study on Mechanical Properties and Strengthening Mechanisms of Al/SiC Nano-Composites, Appl. Phys. A Mater. Sci. Process., 2018, 124(2), p 1–12

    Article  Google Scholar 

  9. U.R. Kanth, P.S. Rao, and M.G. Krishna, Mechanical Behaviour of Fly Ash/SiC Particles Reinforced Al-Zn Alloy-Based Metal Matrix Composites Fabricated by Stir Casting Method, J. Mater. Res. Technol. Braz. Metall. Mater. Min. Assoc., 2019, 8(1), p 737–744

    CAS  Google Scholar 

  10. F.A.R. Rozhbiany and S.R. Jalal, Influence of Reinforcement and Processing on Aluminum Matrix Composites Modified by Stir Casting Route, Adv. Compos. Lett., 2019, 28, p 1–8

    Article  Google Scholar 

  11. N.K. Bhoi, H. Singh, and S. Pratap, Developments in the Aluminum Metal Matrix Composites Reinforced by Micro/Nano Particles—A Review, J. Compos. Mater., 2020, 54(6), p 813–833

    Article  CAS  Google Scholar 

  12. A. Trivedi and V.K. Sud, Grain Characteristics and Engineering Properties of Coal Ash, Granul. Matter, 2002, 4(3), p 93–101

    Article  CAS  Google Scholar 

  13. R. Manimaran, I. Jayakumar, R. Mohammad Giyahudeen, and L. Narayanan, Mechanical Properties of Fly Ash Composites—A Review, Energy Sources Part A Recovery Util. Environ. Eff., 2018, 40(8), p 887–893

    Article  Google Scholar 

  14. M. Ahmaruzzaman, A Review on the Utilization of Fly Ash, Prog. Energy Combust. Sci., 2010, 36(3), p 327–363

    Article  CAS  Google Scholar 

  15. R.Q. Guo, P.K. Rohatgi, and D. Nath, Compacting Characteristics of Aluminium-Fly Ash Powder Mixtures, J. Mater. Sci., 1996, 31, p 5513–5519

    Article  CAS  Google Scholar 

  16. A.K. Kasar, N. Gupta, P.K. Rohatgi, and P.L. Menezes, A Brief Review of Fly Ash as Reinforcement for Composites with Improved Mechanical and Tribological Properties, JOM, 2020, 72(6), p 2340–2351

    Article  CAS  Google Scholar 

  17. J.J. Biernacki, A.K. Vazrala, and H.W. Leimer, Sintering of a Class F Fly Ash, Fuel, 2008, 87, p 782–792

    Article  CAS  Google Scholar 

  18. R.Q. Guo and P.K. Rohatgi, Preparation of Aluminium-Fly Ash Particulate Composite by Powder Metallurgy Technique, J. Mater. Sci., 1997, 2(32), p 3971–3974

    Article  Google Scholar 

  19. Y.Z. Zhu, Z.M. Yin, Z.D. Xiang, and Z. Zhe, Cold Densification Behaviour of Multiple Alloy Powder Containing Fe-Cr and Fe-Mo Hard Particles, Powder Metall., 2008, 51(2), p 143–149

    Article  CAS  Google Scholar 

  20. D. Bouvard, Densification Behaviour of Mixtures of Hard and Soft Powders under Pressure, Powder Technol., 2000, 111(3), p 231–239

    Article  CAS  Google Scholar 

  21. G. Sethi, N.S. Myers, and R.M. German, An Overview of Dynamic Compaction in Powder Metallurgy, Int. Mater. Rev., 2008, 53(4), p 219–234

    Article  CAS  Google Scholar 

  22. U.J. Prasanna Kumar, P. Gupta, A.K. Jha, and D. Kumar, Closed Die Deformation Behavior of Cylindrical Iron-Alumina Metal Matrix Composites During Cold Sinter Forging, J. Inst. Eng. (India) Ser. D, 2016, 97(2), p 135–151

    Article  Google Scholar 

  23. S. Narayan and A. Rajeshkannan, Densification Behaviour in Forming of Sintered Iron-03.5% Carbon Powder Metallurgy Preform during Cold Upsetting, Mater. Des., 2011, 32(2), p 1006–1013

    Article  CAS  Google Scholar 

  24. R. Raj and D.G. Thakur, Qualitative and Quantitative Assessment of Microstructure in Al-B4C Metal Matrix Composite Processed by Modified Stir Casting Technique, Arch. Civ. Mech. Eng., 2016, 16(4), p 949–960

    Article  Google Scholar 

  25. M. Marin and F. B. Marin, Quantitative Image Analysis in Some Iron Powder Metallurgy Materials. in IOP Conference Series: Materials Science and Engineering, 2019

  26. S.L.G. Petroni, PM Compaction Equations Applied for the Modelling of Titanium Hydride Powders Compressibility Data, Powder Metall., 2020, 63(1), p 35–42

    Article  CAS  Google Scholar 

  27. N.M. Abbas, X. Deng, and A.P. Reynolds, Compaction of Machining Chips: Extended Experiments and Modeling, Mech. Mater., 2020, 141, p 103249

    Article  Google Scholar 

  28. F. Güner, Ö.N. Cora, and H. Sofuoğlu, Numerical Modeling of Cold Powder Compaction Using Multi Particle and Continuum Media Approaches, Powder Technol., 2015, 271, p 238–247

    Article  Google Scholar 

  29. A. Saboori, C. Novara, M. Pavese, C. Badini, F. Giorgis, and P. Fino, An Investigation on the Sinterability and the Compaction Behavior of Aluminum/Graphene Nanoplatelets (GNPs) Prepared by Powder Metallurgy, J. Mater. Eng. Perform., 2017, 26(3), p 993–999

    Article  CAS  Google Scholar 

  30. R. Machaka and H.K. Chikwanda, Analysis of the Cold Compaction Behavior of Titanium Powders: A Comprehensive Inter-Model Comparison Study of Compaction Equations, Metall. Mater. Trans. A, 2015, 46(9), p 4286–4297

    Article  CAS  Google Scholar 

  31. T.J. Griffiths and A. Ghanizadeh, Determination of Elastic Constants for Porous Sintered Iron Powder Compacts, Powder Metall., 1986, 29(2), p 129–133

    Article  Google Scholar 

  32. A. Singh, J. Singh, M.K. Sinha, R. Kumar, and V. Verma, Investigations on Microstructural and Microhardness Developments in Sintered Iron–Coal Fly Ash Composites, Sādhanā, 2020, 45, p 1–13

    Article  Google Scholar 

  33. C. Igathinathane, L.O. Pordesimo, E.P. Columbus, W.D. Batchelor, and S.R. Methuku, Shape Identification and Particles Size Distribution from Basic Shape Parameters Using ImageJ, Comput. Electron. Agric., 2008, 63(2), p 168–182

    Article  Google Scholar 

  34. P. Verma, R. Saha, and D. Chaira, Waste Steel Scrap to Nanostructured Powder and Superior Compact through Powder Metallurgy: Powder Generation, Process. Charact. Powder Technol., 2018, 326, p 159–167

    Article  CAS  Google Scholar 

  35. A. Saker, M.G. Cares-Pacheco, P. Marchal, and V. Falk, Powders Flowability Assessment in Granular Compaction: What about the Consistency of Hausner Ratio?, Powder Technol., 2019, 354, p 52–63

    Article  CAS  Google Scholar 

  36. M.R.I. Shishir, F.S. Taip, N.A. Aziz, and R.A. Talib, Physical Properties of Spray-Dried Pink Guava (Psidium Guajava) Powder, Agric. Agric. Sci. Procedia, 2014, 2, p 74–81

    Google Scholar 

  37. A. Bhatt, S. Priyadarshini, A. Acharath Mohanakrishnan, A. Abri, M. Sattler, and S. Techapaphawit, Physical, Chemical, and Geotechnical Properties of Coal Fly Ash: A Global Review, Case Studies in Construction Materials, 2019, 11, p 1–11

    CAS  Google Scholar 

  38. T. Matsunaga, J.K. Kim, S. Hardcastle, and P.K. Rohatgi, Crystallinity and Selected Properties of Fly Ash Particles, Mater. Sci. Eng., A, 2002, 325, p 333–343

    Article  Google Scholar 

  39. C.A. Leon, G. Rodriguez-Ortiz, and E.A. Aguilar-Reyes, Cold Compaction of Metal-Ceramic Powders in the Preparation of Copper Base Hybrid Materials, Mater. Sci. Eng., A, 2009, 526(1–2), p 106–112

    Article  Google Scholar 

  40. R. Stevens, T. Vendlinski, J. Palacio-Cayetano, J. Underdahl, P. Paek, M. Sprang, and E. Simpson, Tracing the Development, Transfer, and Persistence of Problem Solving Skills, Mater. Des., 2001, 24, p 561–575

    Google Scholar 

  41. D. Poquillon, J. Lemaitre, V. Baco-Carles, P. Tailhades, and J. Lacaze, Cold Compaction of Iron Powders—Relations between Powder Morphology and Mechanical Properties: Part I: Powder Preparation and Compaction, Powder Technol., 2002, 126(1), p 65–74

    Article  CAS  Google Scholar 

  42. A. Fathy, O. El-Kady, and M.M.M. Mohammed, Effect of Iron Addition on Microstructure, Mechanical and Magnetic Properties of Al-Matrix Composite Produced by Powder Metallurgy Route, Trans. Nonferrous Met. Soc. China, 2015, 25(1), p 46–53

    Article  CAS  Google Scholar 

  43. M. Andasmas, P. Langlois, N. Fagnon, T. Chauveau, A. Hendaoui, and D. Vrel, Phenomenological Study of the Densification Behavior of Aluminum-Nickel Powder Mixtures during Cold Isostatic Pressing and Differential Hydrostatic Extrusion, Powder Technol., 2011, 207(1–3), p 304–310

    Article  CAS  Google Scholar 

  44. S. Mahdavi and F. Akhlaghi, Effect of SiC Content on the Processing, Compaction Behavior, and Properties of Al6061/SiC/Gr Hybrid Composites, J. Mater. Sci., 2011, 46(5), p 1502–1511

    Article  CAS  Google Scholar 

  45. H.F. Fischmeister, Eighteenth John Player Lecture. Powder Compaction: Fundamentals and Recent Developments, Proc. Instn. Mech. Engrs., 1982, 196, p 105–121

    Article  Google Scholar 

  46. C. Manière and E.A. Olevsky, Porosity Dependence of Powder Compaction Constitutive Parameters: Determination Based on Spark Plasma Sintering Tests, Scripta Mater., 2017, 141, p 62–66

    Article  Google Scholar 

  47. F. Ludewig, N. Vandewalle, and S. Dorbolo, Compaction of Granular Mixtures, Granul. Matter, 2006, 8(2), p 87–91

    Article  Google Scholar 

  48. J.P. Panakkal, H. Willems, and W. Arnold, Nondestructive Evaluation of Elastic Parameters of Sintered Iron Powder Compacts, J. Mater. Sci., 1990, 25(2), p 1397–1402

    Article  CAS  Google Scholar 

  49. Y. Tian, Z. Dou, L. Niu, and T. Zhang, Effect of Nanoboron Carbide Particles on Properties of Copper-Matrix/Graphite Composite Materials, Mater. Res. Express, 2019, 6(9), p 0950c7

    Article  CAS  Google Scholar 

  50. M. Zhou, S. Huang, Y. Lei, W. Liu, and S. Yan, Investigation on Compaction Densification Behaviors of Multicomponent Mixed Metal Powders to Manufacture Silver-Based Filler Metal Sheets, Arab. J. Sci. Eng., 2019, 44(2), p 1321–1335

    Article  CAS  Google Scholar 

  51. M. Andrezak and B. Schiffer, Kanban and Technical Excellence or: Why Daily Releases Are a Great Objective to Meet, in Lecture Notes in Business Information Processing, 2010, p 115–117.

  52. W. Chen, J. Wang, S. Wang, P. Chen, J. Cheng, W. Chen, J. Wang, S. Wang, P. Chen, and J. Cheng, On the Processing Properties and Friction Behaviours during Compaction of Powder Mixtures, Mater. Sci. Technol., 2020, 36, p 1057–1064

    Article  CAS  Google Scholar 

  53. P.J. Denny, Compaction Equations: A Comparison of the Heckel and Kawakita Equations, Powder Technol., 2002, 127, p 162–172

    Article  CAS  Google Scholar 

  54. C. Machio, R. Machaka, T. Shabalala, and H.K. Chikwanda, Analysis of the Cold Compaction Behaviour of TiH2-316L Nanocomposite Powder Blend Using Compaction Models, Mater. Sci. Forum, 2015, 828–829(June), p 121–128

    Article  Google Scholar 

  55. H. Abdollahi, R. Mahdavinejad, and R.P. Leavoli, Investigation and Optimization of Properties of Sintered Iron/Recycled Grey Cast Iron Powder Metallurgy Parts, J. Eng. Manuf., 2015, 229(6), p 1010–1020

    Article  CAS  Google Scholar 

  56. G. Arora and S. Sharma, A Review on Monolithic and Hybrid Metal-Matrix Composites Reinforced with Industrial-Agro Wastes, J. Braz. Soc. Mech. Sci. Eng., 2017, 39(11), p 4819–4835

    Article  CAS  Google Scholar 

  57. D.C. Jana, P. Barick, and B.P. Saha, Effect of Sintering Temperature on Density and Mechanical Properties of Solid-State Sintered Silicon Carbide Ceramics and Evaluation of Failure Origin, J. Mater. Eng. Perform., 2018, 27(6), p 2960–2966

    Article  CAS  Google Scholar 

  58. A. Nirala and A. Upadhyaya, Experimental Characterization and Sintering Behavior in Mixed Atmosphere (N2 and H2) of Fe3P-Added Ferritic Stainless Steel (434L), J. Mater. Eng. Perform., 2020, 29(5), p 2926–2935

    Article  CAS  Google Scholar 

  59. J. William D. Callister and Department, Fundamentals of Materials Science and Engineering. W. Anderson, Ed., Fifth, 2001, Wiley, New York.

  60. H. Abdollahi, R. Mahdavinejad, M. Ghambari, and M. Moradi, Investigation of Green Properties of Iron/Jet-Milled Grey Cast Iron Compacts by Response Surface Method, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2014, 228(4), p 493–503

    Article  CAS  Google Scholar 

  61. P. Balamurugan and M. Uthayakumar, Influence of Process Parameters on Cu-Fly Ash Composite by Powder Metallurgy Technique, Mater. Manuf. Process., 2015, 30(3), p 313–319

    Article  CAS  Google Scholar 

  62. P. Ruano, L.L. Delgado, S. Picco, L. Villegas, F. Tonelli, M. Merlo, J. Rigau, D. Diaz, and M. Masuelli, We Are Intech Open the World’s Leading Publisher of Open Access Books Built by Scientists, Intech, 2016, p 13.

  63. E. Biguereau, D. Bouvard, J.M. Chaix, and S. Roure, On the Swelling of Silver Powder during Sintering, Powder Metall., 2016, 59(5), p 394–400

    Article  CAS  Google Scholar 

  64. F. Lin, Z. Chen, B. Liu, Y. Liu, and C. Zhou, Microstructure and Mechanical Properties of Iron-Containing Titanium Metal-Metal Composites, Int. J. Refract Metal Hard Mater., 2020, 90, p 1–6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram Verma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Singh, J., Sinha, M.K. et al. Compaction and Densification Characteristics of Iron Powder/Coal Fly Ash Mixtures Processed by Powder Metallurgy Technique. J. of Materi Eng and Perform 30, 1207–1220 (2021). https://doi.org/10.1007/s11665-020-05429-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05429-x

Keywords

Navigation