Skip to main content
Log in

Comparison of theoretical and experimental physio-mechanical properties of coal-fly ash (CFA) reinforced iron matrix composites

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

In this work, the effect of coal-fly ash (CFA) reinforcements on the physio-mechanical properties of iron metal matrix composites (IMMCs) are predicted and compared with the experimental results. The IMMCs were synthesized by reinforcing different amounts (0, 0.15, 0.28 and 0.38 vol. %) of CFA particulates to the iron matrix through powder metallurgy technique (P/M). The iron powder/CFA mixtures were compacted at a load of 10 ton followed by sintering in inert environment at 1150 ℃ for 90 min. Structural, morphological, and elemental characterisation of iron/CFA and IMMCs were performed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and Energy Dispersive X-Ray spectroscopy (EDS) respectively. Sufficient diffusion among the iron particles, uniform distribution of CFA particulates and clear interfaces between matrix and reinforcements have been observed in the FESEM micrographs. The trends of experimental results of sintered density and microhardness of the IMMCs has been found in line with the theoretical results predicted using rule of mixtures (ROM). Furthermore, the effects of increased vol.% of CFA inclusions on the elastic modulus \((E)\), yield strength \(({\sigma }_{y}\)) and ultimate tensile strength \({(\sigma }_{u})\) of the IMMCs have been conceived using Ramberg–Osgood (RO) model, under tensile loading. A significant reduction of 32% in sintered density and 42% increment in microhardness of the IMMCs have been observed. The RO model demonstrated significant enhancements of 51% in \(E\) and 42% in \({\sigma }_{y}\). On the other hand, whereas 44% reduction in ultimate tensile strength of IMMCs has been observed on increased amount of CFA (0–0.38 vol.%). The load transfer strengthening mechanism has been found dominating the Hall–Petch followed by Taylor’s strengthening mechanism. Further, the various specific properties of the IMMCs were compared with prevalent literature. The specific properties of IMMCs such as microhardness, \(E\), \({\sigma }_{y}\) and \({\sigma }_{u}\) are found comparable with the established aluminium based MMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

CFA:

Coal-fly ash

MMC:

Metal matrix composite

FMMC:

Ferrous metal matrix composite

NFMMC:

Non-ferrous metal matrix composite

IMMC:

Iron metal matrix composite

RSM:

Response surface methodology

P/M:

Powder metallurgy

ROM:

Rule of mixtures

RO:

Ramberg–Osgood

Wt. %:

Weight percentage

Vol. %:

Volume percentage

Hv:

Vickers’s microhardness

\(\rho_{c}\) :

Density of composite

\(\sigma\) :

Stress

E :

Young’s modulus

σ y :

Yield strength

References

  1. Bajakke, P.A., Malik, V.R., Deshpande, A.S.: Particulate metal matrix composites and their fabrication via friction stir processing–a review. Mater. Manuf. Process. 34(8), 833–881 (2019)

    Article  Google Scholar 

  2. Liu, G.R.: A step-by-step method of rule-of-mixture of fiber- and particle-reinforced composite materials. Compos. Struct. 40(3–4), 313–322 (1997). https://doi.org/10.1016/S0263-8223(98)00033-6

    Article  Google Scholar 

  3. Tomoko Sano, P., Srivatsan, T.S., Michael, W.: Advanced Composites for aerospace, marine and land applications, 143rd ed. California: Springer International Publishers, Switzerland (2014).

  4. Feng, K., Yang, Y., Shen, B., Guo, L.: In situ synthesis of TiC/Fe composites by reaction casting. Mater. Des. 26(1), 37–40 (2005). https://doi.org/10.1016/j.matdes.2004.03.014

    Article  Google Scholar 

  5. Vilakazi, A.Q., Ndlovu, S., Chipise, L., Shemi, A.: The recycling of coal fly ash: a review on sustainable developments and economic considerations. Sustainability (Switzerland). 14(4), 1–32 (2022). https://doi.org/10.3390/su14041958

    Article  Google Scholar 

  6. Chen, G., Wan, J., He, N., Ming Zhang, H., Han, F., Min Zhang, Y.: Strengthening mechanisms based on reinforcement distribution uniformity for particle reinforced aluminum matrix composites. Trans. Nonferrous Met. Soc. China (English Edition) 28(12), 2395–2400 (2018)

    Article  Google Scholar 

  7. Chen, J.K., Huang, I.S.: Thermal properties of aluminum-graphite composites by powder metallurgy. Compos. B Eng. 44(1), 698–703 (2013). https://doi.org/10.1016/j.compositesb.2012.01.083

    Article  Google Scholar 

  8. Gupta, P., Kumar, D., Parkash, O., Jha, A. K.: Sintering and Hardness Behavior of Fe-Al2O3 Metal Matrix Nanocomposites Prepared by Powder Metallurgy. J. Compos. 1–10 (2014).

  9. Bardhan, P.K., Patra, S., Sutradhar, G.: Analysis of density of sintered iron powder component using the response surface method. Mater. Sci. Appl. 01(03), 152–157 (2010)

    Google Scholar 

  10. Jagadeesh, G.V., Gangi Setti, S.: A review on micromechanical methods for evaluation of mechanical behavior of particulate reinforced metal matrix composites. J. Mater. Sci. 55(23), 9848–9882 (2020). https://doi.org/10.1007/s10853-020-04715-2

    Article  Google Scholar 

  11. Vignoli, L.L., Savi, M.A., Pacheco, P.M.C.L., Kalamkarov, A.L.: Comparative analysis of micromechanical models for the elastic composite laminae. Compos. Part B: Eng. 174, 106961 (2019). https://doi.org/10.1016/j.compositesb.2019.106961

    Article  Google Scholar 

  12. You, Y.J., Kim, J.H.J., Park, K.T., Seo, D.W., Lee, T.H.: Modification of rule of mixtures for tensile strength estimation of circular GFRP rebars. Polymers 9(12), 682 (2017). https://doi.org/10.3390/polym9120682

    Article  Google Scholar 

  13. Dixit, S., Stefańska, A., Singh, P.: Manufacturing technology in terms of digital fabrication of contemporary biomimetic structures. Int. J. Construct. Manag. 1–9 (2021).

  14. Dixit, S., et al.: Replacing E-waste with coarse aggregate in architectural engineering and construction industry. Mater. Today: Proc. (2021).

  15. Dixit, S., Singh, S., Singh, S., Varghese, R. G., Pandey, A. K., Varshney, D.: Role of Solar energy and issues in its implementation in the Indian context. In: MATEC Web of Conferences, vol. 172, pp. 06001. EDP Sciences (2018).

  16. Shen, Y.L., Williams, J.J., Piotrowski, G., Chawla, N., Guo, Y.L.: Correlation between tensile and indentation behavior of particle-reinforced metal matrix composites: an experimental and numerical study. Acta Mater. 49(16), 3219–3229 (2001). https://doi.org/10.1016/S1359-6454(01)00226-9

    Article  Google Scholar 

  17. Ramberg, W., Osgood, W.R.: Description of stress-strain curves by three parameters. Natl. Advis. Comm. Aeronaut. 902(July), 1–32 (1943)

    Google Scholar 

  18. Singh, A., Singh, J., Sinha, M.K., Kumar, R., Verma, V.: Investigations on microstructural and microhardness developments in sintered iron – coal fly ash composites. Sādhanā. 2020(45), 1–13 (2020)

    Google Scholar 

  19. Singh, A., Singh, J., Sinha, M.K., Kumar, R., Verma, V.: Compaction and densification characteristics of iron powder/coal fly ash mixtures processed by powder metallurgy technique. J. Mater. Eng. Perform. 30(2), 1207–1220 (2021)

    Article  Google Scholar 

  20. Raj, R., Thakur, D.G.: Qualitative and quantitative assessment of microstructure in Al-B4C metal matrix composite processed by modified stir casting technique. Arch. Civil Mech. Eng. 16(4), 949–960 (2016)

    Article  Google Scholar 

  21. Manimaran, R., Jayakumar, I., Giyahudeen, R.M., L.: Narayanan, Mechanical properties of fly ash composites—a review. Energy Sour., Part A: Recovery, Utilization, Environ. Effects 40(8), 887–893 (2018)

    Article  Google Scholar 

  22. Igathinathane, C., Pordesimo, L.O., Columbus, E.P., Batchelor, W.D., Methuku, S.R.: Shape identification and particles size distribution from basic shape parameters using ImageJ. Comput. Electron. Agric. 63(2), 168–182 (2008)

    Article  Google Scholar 

  23. Bai, S., Perevoshchikova, N., Sha, Y., Wu, X.: The effects of selective laser melting process parameters on relative density of the AlSi10Mg parts and suitable procedures of the archimedes method. Appl. Sci. (Switzerland). 9(3), 583 (2019). https://doi.org/10.3390/app9030583

    Article  Google Scholar 

  24. Melendez, N.M., McDonald, A.G.: Development of WC-based metal matrix composite coatings using low-pressure cold gas dynamic spraying. Surf. Coat. Technol. 214, 101–109 (2013). https://doi.org/10.1016/j.surfcoat.2012.11.010

    Article  Google Scholar 

  25. Srinivasanaik, A., Mallik, A.: Tractable synthesis of graphene oxide by electrochemical exfoliation method. In: Advances in Materials and Metallurgy, pp. 239-248. Springer, Singapore (2019).

  26. Olawuni, E.O., Durowoju, M.O., Asafa, T.B.: Correlation between theoretical and experimental hardness, elastic modulus of discarded aluminium piston reinforced with zirconium diboride and snail shells. SN Appl. Sci. 2(3), 1–12 (2020)

    Article  Google Scholar 

  27. Gadamchetty, G., Pandey, A., Gawture, M.: On Practical Implementation of the Ramberg-Osgood Model for FE Simulation. SAE Int. J. Mater. Manuf. 9(1), 200–205 (2016). https://doi.org/10.4271/2015-01-9086

    Article  Google Scholar 

  28. Hight, T.K., Brandeau, J.F.: Mathematical modeling of the stress strain-strain rate behavior of bone using the Ramberg-Osgood equation. J. Biomech. 16(6), 445–450 (1983)

    Article  Google Scholar 

  29. Anatolyevich, B.P., Yakovlevna, G.N.: Generalization of the Ramberg-Osgood model for elastoplastic materials. J. Mater. Eng. Perform. 28(12), 7342–7346 (2019). https://doi.org/10.1007/s11665-019-04422-3

    Article  Google Scholar 

  30. Biswas, P., Mandal, D., Mondal, M.K.: Failures analysis of in-situ Al–Mg2Si composites using actual microstructure based model. Mater. Sci. Eng. A. 797, 140155 (2020)

    Article  Google Scholar 

  31. Qiu, Z., Fan, H.: Nonlinear modeling of bamboo fiber reinforced composite materials. Compos. Struct. 238(January), 1–12 (2020)

    Google Scholar 

  32. Saba, F., Zhang, F., Liu, S., Liu, T.: Reinforcement size dependence of mechanical properties and strengthening mechanisms in diamond reinforced titanium metal matrix composites. Compos. Part B: Eng. 167, 7–19 (2019)

    Article  Google Scholar 

  33. Sahoo, S., Jha, B.B., Sahoo, T.K., Mandal, A.: Influence of reinforcement and processing on steel-based composites: Microstructure and mechanical response. Mater. Manuf. Process. 33(5), 564–571 (2018)

    Article  Google Scholar 

  34. Li, C.L., Mei, Q.S., Li, J.Y., Chen, F., Ma, Y., Mei, X.M.: Hall-Petch relations and strengthening of Al-ZnO composites in view of grain size relative to interparticle spacing. Scripta Mater. 153(April), 27–30 (2018)

    Article  Google Scholar 

  35. Ferguson, J.B., Schultz, B.F., Venugopalan, D., Lopez, H.F., Rohatgi, P.K., Cho, K., Kim, C.S.: On the superposition of strengthening mechanisms in dispersion strengthened alloys and metal-matrix nanocomposites: Considerations of stress and energy. Met. Mater. Int. 20(2), 375–388 (2014)

    Article  Google Scholar 

  36. Dixit, S., Stefańska, A.: Digitisation of contemporary fabrication processes in the AEC sector. Mater. Today: Proc. 56, 1882–1885 (2022)

    Article  Google Scholar 

  37. Singh, S., Dixit, S., Sahai, S., Sao, A., Kalonia, Y., Kumar, R. S. Key benefits of adopting lean manufacturing principles in Indian construction industry. In: MATEC Web of Conferences, vol. 172, pp. 05002. EDP Sciences (2018).

  38. Kumar, K., Arora, R., Khan, S., Dixit, S.: Characterization of fly ash for potential utilization in green concrete. Mater. Today: Proc. 56, 1886–1890 (2021)

    Article  Google Scholar 

  39. Dixit, S., Singh, P.: Investigating the disposal of E-Waste as in architectural engineering and construction industry. Mater. Today: Proc. 56, 1891–1895 (2021)

    Article  Google Scholar 

  40. Dixit, S., Stefańska, A., Musiuk, A.: Architectural form finding in arboreal supporting structure optimisation. Ain Shams Eng. J. 12(2), 2321–2329 (2021)

    Article  Google Scholar 

  41. Mishra, D.P., Das, S.K., Prasad, D., Kumar, S.: A study of physico-chemical and mineralogical properties of Talcher coal fly ash for stowing in underground coal mines. Mater. Charact. 61(11), 1252–1259 (2010)

    Article  Google Scholar 

  42. Singh, J., Verma, V., Kumar, R., Kumar, R.: Influence of Mg2+-substitution on the optical band gap energy of Cr2− xMgxO3 nanoparticles. Results Phys. 13, 102106 (2019)

    Article  Google Scholar 

  43. William, J., Callister, D.: Fundamentals of Materials Science and Engineering, Fifth. John Wiley & Sons Inc, New York (2001)

    Google Scholar 

  44. Enginsoy, H.M., Bayraktar, E., Katundi, D., Gatamorta, F., Miskioglu, I.: Comprehensive analysis and manufacture of recycled aluminum based hybrid metal matrix composites through the combined method; sintering and sintering + forging. Compos. B Eng. 194(April), 1–14 (2020)

    Google Scholar 

  45. Sim, J., Kang, Y., Kim, B.J., Park, Y.H., Lee, Y.C.: Preparation of fly ash/epoxy composites and its effects on mechanical properties. Polymers 12(1), 1–12 (2020)

    Article  Google Scholar 

  46. Rohatgi, P.K., Gupta, N., Alaraj, S.: Thermal expansion of aluminum-fly ash cenosphere composites synthesized by pressure infiltration echnique. J. Compos. Mater. 40(13), 1163–1174 (2006)

    Article  Google Scholar 

  47. Luo, P., McDonald, D.T., Zhu, S.M., Palanisamy, S., Dargusch, M.S., Xia, K.: Analysis of microstructure and strengthening in pure titanium recycled from machining chips by equal channel angular pressing using electron backscatter diffraction. Mater. Sci. Eng., A 538(January), 252–258 (2012)

    Article  Google Scholar 

  48. Chelliah, N.M., Singh, H., Surappa, M.K.: Microstructural evolution and strengthening behavior in in-situ magnesium matrix composites fabricated by solidification processing. Mater. Chem. Phys. 194(December), 65–76 (2017)

    Article  Google Scholar 

  49. Bhatt, A., Priyadarshini, S., Mohanakrishnan, A.A., Abri, A., Sattler, M., Techapaphawit, S.: Physical, chemical, and geotechnical properties of coal fly ash: A global review. Case Stud. Construct. Mater. 11, e00263 (2019)

    Article  Google Scholar 

  50. Sharma, S.C.: Equation for the density of particle-reinforced metal matrix composites: a new approach. J. Mater. Eng. Perform. 12(3), 324–330 (2003)

    Article  Google Scholar 

  51. Peng, H.X., Fan, Z., Evans, J.R.G.: Bi-continuous metal matrix composites. Mater. Sci. Eng., A 303(1–2), 37–45 (2001)

    Article  Google Scholar 

  52. Singh, A., et al.: Compaction and densification characteristics of iron powder/coal fly ash mixtures processed by powder metallurgy technology. J. Mater. Eng. Perform. 30(July), 1–14 (2020)

    Google Scholar 

  53. Alhajeri, S.N., Al-Fadhalah, K.J., Almazrouee, A.I., Langdon, T.G.: Microstructure and microhardness of an Al-6061 metal matrix composite processed by high-pressure torsion. Mater. Charact. 118, 270–278 (2016)

    Article  Google Scholar 

  54. Dyachkova, L.N., Feldshtein, E.E., Vityaz, P.A., Mikhalski, M.: Tribological properties of iron-based powder composite materials with addition of graphite, alumina and zirconia nanoparticles. J. Frict. Wear. 41(3), 198–203 (2020)

    Article  Google Scholar 

  55. Saboori, A., Novara, C., Pavese, M., Badini, C., Giorgis, F., Fino, P.: An Investigation on the sinterability and the compaction behavior of aluminum/graphene nanoplatelets (GNPs) prepared by powder metallurgy. J. Mater. Eng. Perform. 26(3), 993–999 (2017)

    Article  Google Scholar 

  56. Fu, S.Y., Feng, X.Q., Lauke, B., Mai, Y.W.: Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos. B Eng. 39(6), 933–961 (2008)

    Article  Google Scholar 

  57. Munday, G., Hogan, J., McDonald, A.: On the microstructure-dependency of mechanical properties and failure of low-pressure cold-sprayed tungsten carbide-nickel metal matrix composite coatings. Surf. Coat. Technol. 396, 125947 (2020)

    Article  Google Scholar 

  58. Hongjoo Rhee, C.L., Whittington, W.R., Oppedal, A.L., Sherif, A.R., King, R.L., Kim, H.-J.: Mechanical properties of novel aluminum metal matrix metallic composites: Application to overhead conductors. Mater. Des. 88(Oct), 16–21 (2015)

    Article  Google Scholar 

  59. Samal, P., Vundavilli, P.R., Meher, A., Mahapatra, M.M.: Recent progress in aluminum metal matrix composites: a review on processing, mechanical and wear properties. J. Manuf. Process. 59, 131–152 (2020)

    Article  Google Scholar 

  60. Soorya Prakash, K., Gopal, P.M., Purusothaman, M., Sasikumar, M.: Fabrication and characterization of metal-high entropy alloy composites. Int. J. Metalcasting 14(2), 547–555 (2019)

    Article  Google Scholar 

  61. Pavlina, E.J., Van Tyne, C.J.: Correlation of yield strength and tensile strength with hardness for steels. J. Mater. Eng. Perform. 17(6), 888–893 (2008)

    Article  Google Scholar 

  62. Zhang, P., Li, S.X., Zhang, Z.F.: General relationship between strength and hardness. Mater. Sci. Eng., A 529(1), 62–73 (2011)

    Article  Google Scholar 

  63. Chelliah, N.M., Singh, H., Surappa, M.K.: Microstructural evolution and strengthening behavior in in-situ magnesium matrix composites fabricated by solidification processing. Mater. Chem. Phys. 194(2017), 65–76 (2017)

    Article  Google Scholar 

  64. Sanders, P.G., Youngdahl, C.J., Weertman, J.R.: The strength of nanocrystalline metals with and without flaws. Mater. Sci. Eng., A A234–236(March), 77–82 (1997)

    Article  Google Scholar 

  65. Dixit, S., Stefańska, A., Musiuk, A., Singh, P.: Study of enabling factors affecting the adoption of ICT in the Indian built environment sector. Ain Shams Eng. J. 12(2), 2313–2319 (2021)

    Article  Google Scholar 

  66. Dixit, S.: Impact of management practices on construction productivity in Indian building construction projects: an empirical study. Organ., Technol. Manag. Construct. 13(1), 2383–2390 (2021)

    Google Scholar 

  67. Dixit, S.: Study of factors affecting the performance of construction projects in AEC industry. Organ., Technol. Manag. Construct.: Int. J. 12(1), 2275–2282 (2020)

    Google Scholar 

  68. Meng, Q., Wang, Z.: Prediction of interfacial strength and failure mechanisms in particle-reinforced metal-matrix composites based on a micromechanical model. Eng. Fract. Mech. 142(June), 170–183 (2015)

    Article  Google Scholar 

  69. Biswas, P., Mandal, D., Mondal, M.K.: Micromechanical response of Al-Mg2Si composites using approximated representative volume elements (RVEs) model. Mater. Res. Exp. 6(11), 1–38 (2019)

    Google Scholar 

  70. Kennedy, A.R., Wyatt, S.M.: The effect of processing on the mechanical properties and interfacial strength of aluminium/TiC MMCs. Compos. Sci. Technol. 60(2), 307–314 (2000)

    Article  Google Scholar 

  71. Guo, Q., Han, Y., Zhang, D.: Interface-dominated mechanical behavior in advanced metal matrix composites. Nano Mater. Sci. 2(1), 66–71 (2020)

    Article  Google Scholar 

  72. Geilen, M.B., Schönherr, J.A., Klein, M., Leininger, D.S., Giertler, A., Krupp, U., Oechsner, M.: On the influence of control type and strain rate on the lifetime of 50CrMo4. Metals 10(11), 1458 (2020)

    Article  Google Scholar 

  73. James, L.A.: Ramberg-Osgood strain- hardening characterization. J. Press. Vessel Technol. 1, 1–5 (2017)

    Google Scholar 

  74. Kasar, A.K., Gupta, N., Rohatgi, P.K., Menezes, P.L.: A brief review of fly ash as reinforcement for composites with improved mechanical and tribological properties. Jom. 72(6), 2340–2351 (2020)

    Article  Google Scholar 

  75. Surappa, M.K.: Synthesis of fly ash particle reinforced A356 Al composites and their characterization. Mater. Sci. Eng.: A 480(1–2), 117–124 (2008). https://doi.org/10.1016/j.msea.2007.06.068

    Article  Google Scholar 

  76. Dixit, S., Mandal, S.N., Thanikal, J.V., Saurabh, K.: Evolution of studies in construction productivity: a systematic literature review (2006–2017). Ain Shams Eng. J. 10(3), 555–564 (2019)

    Article  Google Scholar 

  77. Dixit, S., Sharma, K.: An empirical study of major factors affecting productivity of construction projects. In: Emerging trends in civil engineering, pp. 121-129. Springer, Singapore (2020).

  78. Dixit, S., Mandal, S. N., Thanikal, J. V., & Saurabh, K.: Study of significant factors affecting construction productivity using relative importance index in Indian construction industry. In: E3S Web of Conferences, vol. 140, pp. 09010. EDP Sciences (2019).

  79. Singh, A., Singh, J., Sinha, M.K., Kumar, R., Verma, V.: Investigations on microstructural and microhardness developments in sintered iron–coal fly ash composites. Sādhanā 45(1), 1–13 (2020). https://doi.org/10.1007/s12046-020-01408-z

    Article  Google Scholar 

  80. Kanth, U.R., Rao, P.S., Krishna, M.G.: Mechanical behaviour of fly ash/SiC particles reinforced Al-Zn alloy-based metal matrix composites fabricated by stir casting method. J. Market. Res. 8(1), 737–744 (2019)

    Google Scholar 

  81. Jahani, B., Salimi Jazi, M., Azarmi, F., Croll, A.: Effect of volume fraction of reinforcement phase on mechanical behavior of ultra-high-temperature composite consisting of iron matrix and TiB2 particulates. J. Compos. Mater. 52(5), 609–620 (2017)

    Article  Google Scholar 

  82. Perugu, C. S.: Effect of SiC Reinforcement on Microstructure and Mechanical Properties of Aluminum Metal Matrix Composite Effect of SiC Reinforcement on Microstructure and Mechanical Properties of Aluminum Metal Matrix Composite (2018). https://doi.org/10.1088/1757-899X/376/1/012057.

  83. Bacciarini, C., Mathier, V.: Aluminium aa6061 matrix composite reinforced with spherical alumina particles produced by infiltration: perspective on aerospace applications. J. Metall. 1–10, 2014 (2014). https://doi.org/10.1155/2014/248542

    Article  Google Scholar 

  84. Dixit, S.: Analysing the impact of productivity in indian transport infra projects. In: IOP Conf. Ser. Mater. Sci. Eng, vol. 1218, pp. 12059 (2022).

  85. Singh, P., Dixit, S., Sammanit, D., Krishnan, P.: The automated farmlands of tomorrow: an IoT integration with farmlands. In: IOP Conference Series: Materials Science and Engineering, vol. 1218, No. 1, pp. 012048. IOP Publishing (2022).

  86. Rai, R. K., Gosain, A. K., Singh, P., Dixit, S.: Farm advisory services for farmers using SWAT and APEX Model. In: International Conference Sustainable Energy Systems: innovative perspectives, pp. 444-458. Springer, Cham (2020).

  87. Shah, M.N., Dixit, S., Kumar, R., Jain, R., Anand, K.: Causes of delays in slum reconstruction projects in India. Int. J. Constr. Manag. 21(5), 452–467 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurav Dixit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixit, S., Singh, A., Singh, J. et al. Comparison of theoretical and experimental physio-mechanical properties of coal-fly ash (CFA) reinforced iron matrix composites. Int J Interact Des Manuf 17, 2429–2444 (2023). https://doi.org/10.1007/s12008-022-01022-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-01022-9

Keywords

Navigation