Skip to main content
Log in

Powder compaction law for cold die pressing

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We develop a new theoretical model for metal powder compaction that describes the relationship between the green porosity of the compacts and the applied external pressure. This model, applicable to ductile powders both with uniform and non-uniform particle sizes and regular and irregular particle shapes, contains only empirical constants that are physically explained. Among these constants, values related to the plastic behaviour of the material constituting the powder particles as well as the friction coefficient between the powder and die walls are included. The interparticle friction is also considered as a kind of constraint that diminishes the local pressure borne by the fully dense material. Also the tap porosity, an extremely useful parameter that contains the morphometric information of the powder, is considered. The proposed model has been experimentally validated with six metal powders of different types. The agreement between the model and the experimental data is very satisfactory over the tested pressure range. For comparison, the classic model by Fischmeister and Artz has also been fit to the experimental curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balshin M.Y.: Theory of compacting. Vestnik. Metalloprom 18(16), 124–137 (1938)

    Google Scholar 

  2. Heckel R.W.: An analysis of powder compaction phenomena. Trans. Metall. Soc. AIME 221, 1001–1008 (1961)

    Google Scholar 

  3. Kawakita A., Ludde K.H.: Some considerations of powder metals in compaction. Powder Technol. 4, 61–68 (1970)

    Article  Google Scholar 

  4. Li S., Khosrovabadi P.B., Kolster B.H.: New compaction equations for powder materials. Int. J. Powder Metall. 30(1), 47–57 (1994)

    Google Scholar 

  5. Ge R.D.: Constitutive model for hot pressing of powders. J. Mater. Sci. Technol. 10(5), 374–380 (1994)

    Google Scholar 

  6. Panelli R., Filho F.A.: Compaction equation and its use to describe powder consolidation behaviour. Powder Metall. 41(2), 131–133 (1998)

    Google Scholar 

  7. Secondi J.: Modelling powder compaction: from a pressure-density law to continuum mechanics. Powder Metall. 45(3), 213–217 (2002)

    Article  Google Scholar 

  8. Fischmeister H.F., Artz D.E.: Densification of powders by particle deformation. Powder Metall. 26(2), 82–88 (1983)

    Google Scholar 

  9. Park H., Kim K.T.: Consolidation behavior of SiC powder under cold compaction. Mat. Sci. Eng. A 299, 116–124 (2001)

    Article  Google Scholar 

  10. Okimoto K., Oyane M., Shima S.: Study on compacting of metal powders—1. Case of axi-symmetric compacting. J. Jpn. Soc. Powder Metall. 22(6), 177–184 (1975)

    Google Scholar 

  11. Bruhns O., Sluzalec A.: Densification of powder metals with assumed ellipsoidal yield surface. Int. J. Mech. Sci. 35(9), 731–740 (1993)

    Article  MATH  Google Scholar 

  12. Torre C.: Theory and behaviour of pressed powders. Berg-Und Hüttenmännische Monatshefte 93, 62–67 (1948)

    Google Scholar 

  13. Skorokhod V.V., Martynova I.F.: Irreversible deformation of a sintered porous body of work-hardening plastic metal. Poroshk. Metall. 4, 70–74 (1977)

    Google Scholar 

  14. Segal V.M., Reznikov V.I., Malyshev V.I., Solov’ev V.I.: Densification of powder materials during isostatic compression. Poroshk. Metall. 6, 26–30 (1979)

    Google Scholar 

  15. Procopio A.T., Zavaliangos A.: Simulation of multi-axial compaction of granular media from loose to high relative densities. J. Mech. Phys. Solids 53, 1523–1551 (2005)

    Article  MATH  ADS  Google Scholar 

  16. Montes J.M., Cuevas F.G., Cintas J., Rodríguez J.A., Herrerra E.J.: The equivalent simple cubic system. In: Caruta, B.M. (eds) Trends in Materials Science Research, pp. 157–195. Nova Publishers, USA (2005)

    Google Scholar 

  17. Montes J.M., Cuevas F.G., Cintas J.: A new expression for the effective pressure on powders under compression. Comp. Mater. Sci. 36, 329–337 (2006)

    Article  Google Scholar 

  18. Montes J.M., Cuevas F.G., Cintas J.: Electrical resistivity of metal powder aggregates. Metall. Mater. Trans. B 38(6), 957–964 (2007)

    Article  Google Scholar 

  19. Montes J.M., Cuevas F.G., Cintas J.: Porosity effect on the electrical conductivity of sintered powder compact. Appl. Phys. A 92, 375–380 (2008)

    Article  ADS  Google Scholar 

  20. German R.M.: Powder Metallurgy and Particulate Materials Processing, pp. 192. MPIF, Metal Powder Industries Federation, Princeton (2005)

    Google Scholar 

  21. Ludwik P.: Elemente der Technologischen Mechanik, pp. 32. Springer, Berlin (1909)

    MATH  Google Scholar 

  22. Voce E.: The relationship between stress and strain for homogeneous deformation. J. Inst. Met. 74, 537–542 (1948)

    Google Scholar 

  23. Chinh N.Q., Horváth G., Horita Z., Langdon T.G.: A new constitutive relationship for deformation of metals over a wide range of strain. Acta Materialia 52, 3555–3563 (2004)

    Article  Google Scholar 

  24. MPIF Standard 46, Determination of Tap Density of Metal Powders. In: Standard Test Methods for Metal Powders and Powder Metallurgy Products, MPIF, Princeton, New Jersey, USA (2002)

  25. MPIF Standard 45, Determination of Compressibility of Metal Powders, in: Standard Test Methods for Metal Powders and Powder Metallurgy Products, MPIF, Princeton, New Jersey, USA (2002)

  26. Brandes, E.A. (eds): Smithells Metals Reference Book, 6th edn. Butterworths & Co Publishers, London (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Montes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montes, J.M., Cuevas, F.G., Cintas, J. et al. Powder compaction law for cold die pressing. Granular Matter 12, 617–627 (2010). https://doi.org/10.1007/s10035-010-0203-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-010-0203-x

Keywords

Navigation