Skip to main content

Advertisement

Log in

Recrystallization and Strengthening Mechanism in Friction-Stir-Processed Al Powder Compacts

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Green Al powder compacts were subjected to densification by friction stir processing (FSP). Prior to FSP, the Al powder was cold compacted at three different pressures of 50, 200 and 380 MPa to achieve green densities of 2.1, 2.3 and 2.5 g/cm3, respectively. After FSP density increased to 2.7 g/cm3 (100% densification), green density had effect on microstructure and properties obtained after FSP. The size and shape of the nugget area was found to depend on compaction pressure though the FSP parameters were unchanged. After FSP, the sample compacted at highest compaction pressure showed fine and recrystallized grains, whereas the sample compacted at lowest compaction pressure showed elongated grains with higher dislocation density. An extensive microstructural investigation suggested that grain refinement occurred by continuous dynamic recrystallization. Strengthening in sample with fine, recrystallized microstructure was dominated by grain boundary strengthening mechanism, whereas, in unrecrystallized microstructure, strengthening was due to strain hardening mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Okuma, The Sintering Mechanism of Aluminium and the Anodization of Aluminium Sintered Bodies, Electrocomp. Sci. Tech., 1979, 6, p 23–29

    CAS  Google Scholar 

  2. V.S. Kruzhanov, Modern Manufacturing of Powder-Metallurgical Products with High Density and Performance by Press–Sinter Technology, Powder Metall. Met. Ceram., 2018, 57, p 431–446

    CAS  Google Scholar 

  3. E.O. Olakanmi, R.F. Cochrane, and K.W. Dalgarno, A Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, and Properties, J. Prog. Mater. Sci., 2015, 74, p 401–477

    CAS  Google Scholar 

  4. W. Kehl and H.F. Fischmeister, Liquid Phase Sintering of Al-Cu Compacts, Powder Metall., 1980, 23, p 113–119

    CAS  Google Scholar 

  5. R.N. Lumley, T.B. Sercombe, and G.B. Schaffer, Surface Oxide and the Role of Magnesium during the Sintering of Aluminium, Metall. Mater. Trans. A, 1999, 30, p 457–463

    Google Scholar 

  6. M.C. Oh and B. Ahn, Effect of Mg Composition on Sintering Behaviors and Mechanical Properties of Al-Cu-Mg Alloy, Trans. Nonferrous Met. Soc. China, 2014, 24, p s53–s58

    CAS  Google Scholar 

  7. J.M. Martín, T. Gómez-Acebo, and F. Castro, Sintering Behaviour and Mechanical Properties of PM Al-Zn-Mg-Cu Alloy Containing Elemental Mg Additions, Powder Metall., 2002, 45, p 173–180

    Google Scholar 

  8. C.J. Hsu, C.Y. Chang, P.W. Kao, N.J. Ho, and C.P. Chang, Al-Al3Ti Nanocomposites Produced In Situ by Friction Stir Processing, Acta Mater., 2006, 54, p 5241–5249

    CAS  Google Scholar 

  9. I.S. Lee, C.J. Hsu, C.F. Chen, N.J. Ho, and P.W. Kao, Particle-Reinforced Aluminum Matrix Composites Produced from Powder Mixtures via Friction Stir Processing, Compos. Sci. Technol., 2011, 71, p 693–698

    CAS  Google Scholar 

  10. I.S. Lee, P.W. Kao, and N.J. Ho, Microstructure and Mechanical Properties of Al-Fe in Situ Nanocomposite Produced by Friction Stir Processing, Intermetallics, 2008, 16, p 1104–1108

    CAS  Google Scholar 

  11. G.L. You, N.J. Ho, and P.W. Kao, The Microstructure and Mechanical Properties of an Al-CuO In Situ Composite Produced Using Friction Stir Processing, Mater. Lett., 2013, 90, p 26–29

    CAS  Google Scholar 

  12. G.L. You, N.J. Ho, and P.W. Kao, In Situ Formation of Al2O3 Nanoparticles during Friction Stir Processing of AlSiO2 Composite, Mater. Charact., 2013, 80, p 1–8

    CAS  Google Scholar 

  13. C.J. Hsu, P.W. Kao, and N.J. Ho, Ultrafine-Grained Al-Al2Cu Composite Produced In Situ by Friction Stir Processing, Scr. Mater., 2005, 53, p 341–345

    CAS  Google Scholar 

  14. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R, 2005, 50, p 1–78

    Google Scholar 

  15. J. Su, T.W. Nelson, and C.J. Sterling, Friction Stir Processing of Large-Area Bulk UFG Aluminum Alloys, Scr. Mater., 2005, 52, p 135–140

    CAS  Google Scholar 

  16. C.G. Rhodes, M.W. Mahoney, W.H. Bingel, and M. Calabrese, Fine-Grain Evolution in Friction-Stir Processed 7050 Aluminum, Scr. Mater., 2003, 48, p 1451–1455

    CAS  Google Scholar 

  17. J.Y. Kwon, I. Shigematsu, and N. Saito, Mechanical Properties of Fine-Grained Aluminum Alloy Produced by Friction Stir Process, Scr. Mater., 2003, 49, p 785–789

    CAS  Google Scholar 

  18. W.B. Lee, Y.M. Yeon, and S.B. Jung, The Improvement of Mechanical Properties of Friction-Stir-Welded A356 Al Alloy, Mater. Sci. Eng. A, 2003, 355, p 154–159

    Google Scholar 

  19. P.B. Berbon, W.H. Bingel, R.S. Mishra, C.C. Bampton, and M.W. Mahoney, Friction Stir Processing: A Tool to Homogenize Nanocomposite Aluminum Alloys, Scr. Mater., 2001, 44, p 61–66

    CAS  Google Scholar 

  20. S.R.H. Zeidabadi and H. Daneshmanesh, Fabrication and Characterization of In Situ Al/Nb Metal/Intermetallic Surface Composite by Friction Stir Processing, Mater. Sci. Eng. A, 2017, 702, p 189–195

    Google Scholar 

  21. B. Li, Y. Shen, L. Luo, and W. Hu, Fabrication of TiCp/Ti-6Al-4V Surface Composite via Friction Stir Processing (FSP): Process Optimization, Particle Dispersion-Refinement Behavior and Hardening Mechanism, Mater. Sci. Eng. A, 2013, 574, p 75–85

    CAS  Google Scholar 

  22. M. Raaft, T.S. Mahmoud, H.M. Zakaria, and T.A. Khalifa, Microstructural, Mechanical and Wear Behavior of A390/Graphite and A390/Al2O3 Surface Composites Fabricated Using FSP, Mater. Sci. Eng. A, 2011, 528, p 5741–5746

    CAS  Google Scholar 

  23. M. Narimani, B. Lot, and Z. Sadeghian, Investigating the Microstructure and Mechanical Properties of Al-TiB2 Composite Fabricated by Friction Stir Processing (FSP), Mater. Sci. Eng. A, 2016, 673, p 436–442

    CAS  Google Scholar 

  24. C.M. Hu, C.M. Lai, P.W. Kao, N.J. Ho, and J.C. Huang, Solute-Enhanced Tensile Ductility of Ultrafine-Grained Al-Zn Alloy Fabricated by Friction Stir Processing, Scr. Mater., 2009, 60, p 639–642

    CAS  Google Scholar 

  25. G.L. You, N.J. Ho, and P.W. Kao, Aluminum Based In Situ Nanocomposite Produced from Al-Mg-CuO Powder Mixture by Using Friction Stir Processing, Mater. Lett., 2013, 100, p 219–222

    CAS  Google Scholar 

  26. C.M. Hu, C.M. Lai, X.H. Du, N.J. Ho, and J.C. Huang, Enhanced Tensile Plasticity in Ultrafine-Grained Metallic Composite Fabricated by Friction Stir Process, Scr. Mater., 2008, 59, p 1163–1166

    CAS  Google Scholar 

  27. P.J. James, Particle Deformation during Cold Isostatic Pressing of Metal Powders, Powder Metall., 1977, 20, p 199–204

    CAS  Google Scholar 

  28. J.K. Mackenzie and M.J. Thomson, Some Statistics Associated with the Random Disorientation Of Cubes, Biometrika, 1957, 44, p 205–210

    Google Scholar 

  29. I. Samajdar and R.D. Doherty, Grain Boundary Misorientation in DC-Cast Aluminum Alloy, Scr. Metall., 1994, 31, p 527–530

    CAS  Google Scholar 

  30. H. Qiu, L.N. Wang, J.G. Qi, H. Zuo, and K. Hiraoka, Enhancement of Fracture Toughness of High-Strength Cr-Ni Weld Metals by Strain-Induced Martensite Transformation, Mater. Sci. Eng. A, 2013, 579, p 71–76

    CAS  Google Scholar 

  31. A. Gerlich, P. Su, M. Yamamoto, and T.H. North, Effect of Welding Parameters on the Strain Rate and Microstructure of Friction Stir Spot Welded 2024 Aluminum Alloy, J. Mater. Sci., 2007, 42, p 5589–5601

    CAS  Google Scholar 

  32. C.I. Chang, C.J. Lee, and J.C. Huang, Relationship Between Grain Size and Zener–Holloman Parameter during Friction Stir Processing in AZ31 Mg Alloys, Scr. Mater., 2004, 51, p 509–514

    CAS  Google Scholar 

  33. G. Chen, Z. Feng, Y. Zhu, and Q. Shi, An Alternative Frictional Boundary Condition for Computational Fluid Dynamics Simulation of Friction Stir Welding, J. Mater. Eng. Perform., 2016, 25, p 4016–4023

    CAS  Google Scholar 

  34. A.G. Rao, K.R. Ravi, B. Ramakrishnarao, V.P. Deshmukh, A. Sharma, N. Prabhu, and B.P. Kashyap, Recrystallization Phenomena during Friction Stir Processing of Hypereutectic Aluminum-Silicon Alloy, Metall. Mater. Trans. A, 2013, 44, p 1519–1529

    CAS  Google Scholar 

  35. J.J. Jonas, M. Sellars, and W.J.M.G. Tegart, Strength and Structure under Hot-Working Conditions, Metall. Rev., 1969, 14, p 1–24

    Google Scholar 

  36. C.Y. Yu, P.W. Kao, and C.P. Chang, Transition of Tensile Deformation Behaviors in Ultrafine-Grained Aluminum, Acta Mater., 2005, 53, p 4019–4028

    CAS  Google Scholar 

  37. S.J. Lee, Y. Sun, and H. Fujii, Stacking-Fault Energy, Mechanical Twinning and Strain Hardening of Fe-18Mn-0.6C-(0, 1.5)Al Twinning-Induced Plasticity Steels during Friction Stir Welding, Acta Mater., 2018, 148, p 235–248

    CAS  Google Scholar 

  38. E. Breitbarth, S. Zae, F. Archie, M. Besel, D. Raabe, and G. Requena, Evolution of Dislocation Patterns Inside the Plastic Zone Introduced by Fatigue in an Aged Aluminium Alloy AA2024-T3, Mater. Sci. Eng. A, 2018, 718, p 345–349

    CAS  Google Scholar 

  39. Y. Tomota, M. Ojima, S. Harjo, W. Gong, S. Sato, and T. Ungár, Dislocation Densities and Intergranular Stresses of Plastically Deformed Austenitic Steels, Mater. Sci. Eng. A, 2019, 743, p 32–39

    CAS  Google Scholar 

  40. C. Ha, J. Bohlen, S. Yi, X. Zhou, H. Brokmeier, N. Schell, D. Letzig, and K.U. Kainer, Influence of Nd or Ca Addition on the Dislocation Activity and Texture Changes of Mg-Zn Alloy Sheets under Uniaxial Tensile Loading, Mater. Sci. Eng. A, 2019, 761, p 138053

    CAS  Google Scholar 

  41. C.W. Sinclair, W.J. Poole, and Y. Bréchet, A Model for the Grain Size Dependent Work Hardening of Copper, Scr. Mater., 2006, 55, p 739–742

    CAS  Google Scholar 

  42. A. Das and S. Tarafder, Geometry of Dimples and Its Correlation with Mechanical Properties in Austenitic Stainless Steel, Scr. Mater., 2008, 59, p 1014–1017

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Pancholi.

Ethics declarations

Conflict of interest

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malakar, A., Pancholi, V. & Dabhade, V.V. Recrystallization and Strengthening Mechanism in Friction-Stir-Processed Al Powder Compacts. J. of Materi Eng and Perform 29, 3243–3252 (2020). https://doi.org/10.1007/s11665-020-04806-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04806-w

Keywords

Navigation