Skip to main content
Log in

Interfacial Reaction of Sn and Cu-xZn Substrates After Reflow and Thermal Aging

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Zn additions to Cu under bump metallurgy (UBM) in solder joints were the subject of this study. An alternative design was implemented to fabricate pure Sn as the solder and Cu-xZn (x = 15 wt.% and 30 wt.%) as the UBM to form the reaction couple. As the Zn content increased from 15 wt.% to 30 wt.% in the Sn/Cu-Zn system, growth of both Cu3Sn and Cu6Sn5 was suppressed. In addition, no Kirkendall voids were observed at the interface in either Sn/Cu-Zn couple during heat treatment. After 40-day aging, different multilayered phases of [Cu6Sn5/Cu3Sn/Cu(Zn)] and [Cu6Sn5/Cu(Zn,Sn)/CuZn] formed at the interface of [Sn/Cu-15Zn] and [Sn/Cu-30Zn] couples, respectively. The growth mechanism of intermetallic compounds (IMCs) during aging is discussed on the basis of the composition variation in the joint assembly with the aid of electron-microscopic characterization and the Sn-Cu-Zn ternary phase diagram. According to these analyses of interfacial morphology and IMC formation in the Sn/Cu-Zn system, Cu-Zn is a potential UBM for retarding Cu pad consumption in solder joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abtew and G. Selvaduray, Mater. Sci. Eng. R: Rep. 27, 95 (2000).

    Article  Google Scholar 

  2. D.R. Frear, J.W. Jang, J.K. Lin, and C. Zhang, JOM 53, 1047 (2001).

    Article  Google Scholar 

  3. T. Laurila, V. Vuorinen, and J.K. Kivilahti, Mater. Sci. Eng. R: Rep. 49, 1 (2005).

    Article  Google Scholar 

  4. G.Y. Jang, J.G. Duh, H. Takahashi, S.W. Lu, and J.C. Chen, J. Electron. Mater. 35, 1745 (2006).

    Article  CAS  ADS  Google Scholar 

  5. W. Peng, E. Monlevade, and M.E. Marques, Microelectron. Reliab. 47, 2161 (2007).

    Article  CAS  Google Scholar 

  6. X. Deng, R.S. Sidhu, P. Johnson, and N. Chaela, Metall. Mater. Trans. A 36A, 55 (2005).

    Article  CAS  ADS  Google Scholar 

  7. Y.K. Jee, Y.H. Ko, and J. Yu, J. Mater. Res. 22, 1879 (2007).

    Article  CAS  ADS  Google Scholar 

  8. T.C. Chiu, K. Zeng, R. Stierman, D. Edwards, and K. Ano, Proc. 54th Electronic Components and Technology Conf., pp. 1256–1262.

  9. J. Yu and J.Y. Kim, Acta Mater. 56, 5514 (2008).

    Article  CAS  MathSciNet  Google Scholar 

  10. K. Zeng, R. Stierman, T.C. Chiu, D. Edwards, K. Ano, and K.N. Tu, J. Appl. Phys. 97, 024508 (2005).

    Article  ADS  Google Scholar 

  11. K.S. Kim, S.H. Huh, and K. Suganuma, Microelectron. Reliab. 43, 259 (2003).

    Article  CAS  Google Scholar 

  12. I.E. Anderson and J.L. Harringa, J. Electron. Mater. 35, 94 (2006).

    Article  CAS  ADS  Google Scholar 

  13. C.M.L. Wua, D.Q. Yua, C.M.T. Lawa, and L. Wangb, Mater. Sci. Eng. R: Rep. 44, 1 (2004).

    Article  Google Scholar 

  14. M. McCormack and S. Jin, JOM 45, 36 (1993).

    CAS  Google Scholar 

  15. M. McCormack and S. Jin, J. Electron. Mater. 23, 635 (1994).

    Article  CAS  ADS  Google Scholar 

  16. S.K. Kang, D.Y. Shih, D. Leonard, D.W. Henderson, T. Gosselin, S. Cho, J. Yu, and W.K. Choi, JOM 56, 34 (2004).

    Article  CAS  Google Scholar 

  17. S.K. Kang, D. Leonard, D.Y. Shih, L. Gignac, D.W. Henderson, S. Cho, and J. Yu, J. Electron. Mater. 35, 479 (2006).

    Article  CAS  ADS  Google Scholar 

  18. M.G. Cho, S.K. Kang, D.Y. Shih, and H.M. Lee, J. Electron. Mater. 36, 1501 (2007).

    Article  CAS  ADS  Google Scholar 

  19. C. Yu, H. Lu, and S. Li, J. Alloys Compd. 460, 594 (2008).

    Article  CAS  Google Scholar 

  20. F.J. Wang, F. Gao, X. Ma, and Y.Y. Qian, J. Electron. Mater. 35, 1818 (2006).

    Article  CAS  ADS  Google Scholar 

  21. A. Fawzy, Mater. Charact. 58, 323 (2007).

    Article  CAS  Google Scholar 

  22. A.A. El-Daly, A.M. Abdel-Daiem, A.N. Abdel-Rahman, and S.M. Mohammed, Mater. Chem. Phys. 85, 163 (2004).

    Article  CAS  Google Scholar 

  23. F.J. Wang, X. Ma, and Y. Qian, Scripta Mater. 53, 699 (2005).

    Article  CAS  Google Scholar 

  24. S.C. Yang, C.E. Ho, C.W. Chang, and C.R. Kao, J. Mater. Res. 21, 2436 (2006).

    Article  CAS  ADS  Google Scholar 

  25. S.C. Yang, Y.W. Wang, C.C. Chang, and C.R. Kao, J. Electron. Mater. 37, 1591 (2008).

    Article  CAS  ADS  Google Scholar 

  26. M.G. Cho, S. Seo, and H.M. Lee, J. Alloys Compd. 474, 510 (2009).

    Article  CAS  Google Scholar 

  27. C.Y. Oh, H. Roh, Y.M. Kim, J.S. Lee, H.Y. Cho, and Y. Kim, J. Mater. Res. 24, 297 (2009).

    Article  CAS  ADS  Google Scholar 

  28. C.Y. Chou and S.W. Chen, Acta Mater. 54, 2393 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of this study is from the National Science Council, Taiwan, under Contract No. NSC-97-2221-E-007-021-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenq-Gong Duh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, CY., Wang, KJ. & Duh, JG. Interfacial Reaction of Sn and Cu-xZn Substrates After Reflow and Thermal Aging. J. Electron. Mater. 39, 230–237 (2010). https://doi.org/10.1007/s11664-009-0992-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0992-z

Keywords

Navigation