Skip to main content
Log in

Influence of Cu content on compound formation near the chip side for the flip-chip Sn-3.0Ag-(0.5 or 1.5)Cu solder bump during aging

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Sn-Ag-Cu solder is a promising candidate to replace conventional Sn-Pb solder. Interfacial reactions for the flip-chip Sn-3.0Ag-(0.5 or 1.5)Cu solder joints were investigated after aging at 150°C. The under bump metallization (UBM) for the Sn-3.0Ag-(0.5 or 1.5)Cu solders on the chip side was an Al/Ni(V)/Cu thin film, while the bond pad for the Sn-3.0Ag-0.5Cu solder on the plastic substrate side was Cu/electroless Ni/immersion Au. In the Sn-3.0Ag-0.5Cu joint, the Cu layer at the chip side dissolved completely into the solder, and the Ni(V) layer dissolved and reacted with the solder to form a (Cu1−y,Niy)6Sn5 intermetallic compound (IMC). For the Sn-3.0Ag-1.5Cu joint, only a portion of the Cu layer dissolved, and the remaining Cu layer reacted with solder to form Cu6Sn5 IMC. The Ni in Ni(V) layer was incorporated into the Cu6Sn5 IMC through slow solid-state diffusion, with most of the Ni(V) layer preserved. At the plastic substrate side, three interfacial products, (Cu1−y,Niy)6Sn5, (Ni1−x,Cux)3Sn4, and a P-rich layer, were observed between the solder and the EN layer in both Sn-Ag-Cu joints. The interfacial reaction near the chip side could be related to the Cu concentration in the solder joint. In addition, evolution of the diffusion path near the chip side in Sn-Ag-Cu joints during aging is also discussed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Bae and S.J. Kim, J. Mater. Res. 17, 743 (2002).

    CAS  Google Scholar 

  2. H.W. Miao and J.G. Duh, Mater. Chem. Phys. 71, 255 (2001).

    Article  CAS  Google Scholar 

  3. D.R. Frear, J.W. Jang, J.K. Lin, and C. Zang, JOM 53, 28 (2001).

    CAS  Google Scholar 

  4. B.L. Young, J.G. Duh, and B.S. Chiou, J. Electron. Mater. 30, 543 (2001).

    CAS  Google Scholar 

  5. K. Suganuma, Curr. Opin. Solid State Mater. Sci. 5, 55 (2001).

    Article  CAS  Google Scholar 

  6. K.S. Kim, S.H. Huh, and K. Suganuma, Mater. Sci. Eng., A 333, 106 (2002).

    Article  Google Scholar 

  7. L.F. Miller, IBM J. Res. Dev. 13, 239 (1969).

    Article  CAS  Google Scholar 

  8. J.H. Lau, Flip Chip Technologies (New York: McGraw-Hill, 1996), pp. 26–30.

    Google Scholar 

  9. G.R. Blackwell, The Electronic Packaging Handbook (Boca Raton, Florida: CRC Press, 2000), pp. 4.4–4.25.

    Google Scholar 

  10. M. Li, F. Zhang, W.T. Chen, K. Zeng, K.N. Tu, H. Balkan, and P. Elenius, J. Mater. Res. 17, 1612 (2002).

    CAS  Google Scholar 

  11. F. Zhang, M. Li, C.C. Chum, and K.N. Tu, J. Mater. Res. 17, 2757 (2002).

    CAS  Google Scholar 

  12. F. Zhang, M. Li, C.C. Chum, and Z.C. Shao, J. Electron. Mater. 32, 123 (2003).

    Article  CAS  Google Scholar 

  13. F. Zhang, M. Li, B. Balakrisnan, and W.T. Chen, J. Electron. Mater. 31, 1256 (2002).

    Article  Google Scholar 

  14. J.S. Ha, T.S. Oh, and K.N. Tu, J. Mater. Res. 18, 2109 (2003).

    CAS  Google Scholar 

  15. J.I. Goldstein, D.E. Newbury, D.C. Joy, C.E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J.R. Michael, Scanning Electron Microscopy and X-ray Microanalysis (New York: Plenum, 2003), pp. 391–420.

    Google Scholar 

  16. G.Y. Jang, C.S. Huang, L.Y. Hsiao, J.G. Duh, and H. Takahashi, J. Electron. Mater. 33, 1118 (2004).

    Article  CAS  Google Scholar 

  17. R.E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles (Boston: PWS Publishing Company, 1994), pp. 272–299.

    Google Scholar 

  18. W.D. Callister, Materials Science and Engineering: An Introduction (New York: John Wiley & Sons, Inc., 1997), pp. 8–27.

    Google Scholar 

  19. H. Ohtani, K. Okuda, and K. Ishida, J. Phase Equilib. 16, 416 (1995).

    CAS  Google Scholar 

  20. J.H. Shim, C.S. Oh, B.J. Lee, and D.N. Lee, Z. Metallkd. 87, 205 (1996).

    CAS  Google Scholar 

  21. F.H. Hayes, H.L. Lukas, G. Effenberg, and G. Petzow, Z. Metallkd. 77, 749 (1986).

    CAS  Google Scholar 

  22. C.S. Oh, J.H. Shim, B.J. Lee, and D.N. Lee, J. Alloys Compd. 238, 155 (1996).

    Article  CAS  Google Scholar 

  23. K.W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, and C.A. Handwerker, J. Electron. Mater. 29, 1122 (2000).

    Article  CAS  Google Scholar 

  24. C.H. Lin, S.W. Chen, and C.H. Wang, J. Electron. Mater. 31, 907 (2002).

    Article  CAS  Google Scholar 

  25. W.T. Chen, C.E. Ho, and C.R. Kao, J. Mater. Res. 17, 263 (2002).

    CAS  Google Scholar 

  26. C.Y. Li and J.G. Duh, J. Mater. Res. 20, 3118 (2005).

    Article  CAS  Google Scholar 

  27. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams (Materials Park, Ohio: ASM Int., 1990), pp. 1442–1446.

    Google Scholar 

  28. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams (Materials Park, Ohio: ASM Int., 1990), pp. 2863–2864.

    Google Scholar 

  29. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams (Materials Park, Ohio: ASM Int., 1990), pp. 1481–1483.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, GY., Duh, JG., Takahashi, H. et al. Influence of Cu content on compound formation near the chip side for the flip-chip Sn-3.0Ag-(0.5 or 1.5)Cu solder bump during aging. J. Electron. Mater. 35, 1745–1754 (2006). https://doi.org/10.1007/s11664-006-0229-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-006-0229-3

Key words

Navigation