Skip to main content
Log in

Capillary Interaction Between Micron-Sized Ce2O3 Inclusions at the Ar Gas/Liquid Steel Interface

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The agglomeration behavior of Ce2O3 inclusions was observed in situ on a 20 pct Cr liquid steel surface (i.e., the argon gas/liquid steel interface) using high temperature confocal scanning laser microscopy (CSLM). The inclusions are electrolytically extracted from the steel sample. These inclusions are heterogeneous in chemical composition and are shaped irregularly with a rough surface, suggesting pinning (undulating) three-phase contact lines around the inclusion particles on the liquid steel surface. To understand the interactions between Ce2O3 inclusions deeply, the particles are treated either as capillary ‘charges’ with planar contact lines or as capillary ‘multipoles’ with undulating contact lines through the analogy with 2D electrostatics. These capillary interactions include ‘charge’–‘charge’, ‘charge’–‘quadrupole’, ‘charge’–‘hexapole’, ‘quadrupole’–‘quadrupole’ and ‘hexapole’–‘hexapole’. It is found that the interaction between capillary ‘quadrupoles’ performs best in interpreting the strong pairwise attractive force between Ce2O3 inclusions. However, there are apparent deviations between the attractive force derived from the CSLM test and that predicted from the capillary ‘quadrupoles’ model. These deviations might be caused by the more complex undulation of the real contact lines rather than the rotational symmetry assumption in the capillary ‘quadrupole’ model. Based on the present analysis, the resistive drag force is larger compared to the inertial force by 3 or 4 orders of magnitude.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17.
Fig. 18.

Similar content being viewed by others

Abbreviations

A Y :

Projected area of particle ‘Y’ (m2)

b Y :

Immersion depth of particle ‘Y’ (m)

C:

Coulomb (A s)

D Y :

Density ratio of particle ‘Y’ and liquid phase

f :

Drag coefficient

F Chrg–Chrg :

Capillary force between capillary ‘charges’ (N)

F Chrg–MP :

Capillary force between a capillary ‘charge’ and a capillary ‘multipole’ (N)

F cap :

Capillary force on particles (N)

F inert :

Inertial force on particles (N)

g :

Gravity acceleration vector (m/s2)

G −1 :

Hydrodynamic resistance coefficient

G 0 :

A constant for the interaction between capillary ‘multipoles’

H Y :

Undulation amplitude of particle ‘Y’ (m)

h QP :

Meniscus profile around a capillary ‘quadrupole’ (m)

h HP :

Meniscus profile around a capillary ‘hexapole’ (m)

K 0 :

Modified Bessel function of zeroth order

L :

Distance between particle mass centers (m)

n Y :

Multipole order of particle ‘Y’

m Y :

Mass of particle ‘Y’ (kg)

q −1 :

Capillary length (m)

Q Y :

Capillary ‘charge’ of particle ‘Y’ (m)

r c,Y :

Radius of contact line of particle ‘Y’ (m)

R eq,Y :

Equivalent radius of particle ‘Y’ (m)

t :

Time (s)

T :

Temperature (K)

v :

Velocity (m/s)

ΔW Chrg –Chrg :

Capillary interaction energy between two ‘charges’ (J)

ΔW Chrg–MP :

Capillary interaction energy between a ‘charge’ and a ‘multipole’ (J)

ΔW MP–MP :

Capillary interaction energy between ‘multipoles’ (J)

α :

Contact angle between liquid and solid particle

Δα :

Contact angle deviation

μ :

Dynamic viscosity (Pa s)

γ :

Interfacial tension of fluid interfaces (N/m)

φ Y :

Rotation angle of particle ‘Y’ around a vertical axis

ρ I, ρ II :

Densities of the fluid phases (kg/m3)

ρ Y :

Density of particle ‘Y’ (kg/m3)

ψ Y :

Meniscus slope angle of particle ‘Y’

κ B :

Boltzmann constant (J/K)

Drag:

Drag resistance

Chrg:

Capillary ‘charge’

QP:

Capillary ‘quadrupole’

HP:

Capillary ‘hexapole’

Chrg–Chrg:

Interaction between capillary ‘charges’

Chrg–MP:

Interaction between a capillary ‘charge’ and a ‘multipole’

MP:

Capillary ‘multipoles’

tot:

Total

Y:

Particle index, A or B

References

  1. J. Lan, J. He, W. Ding, Q. Wang, and Y. Zhu: ISIJ Int., 2000, vol. 40, pp. 1275–82.

    Article  CAS  Google Scholar 

  2. H. Fujikawa and S.B. Newcomb: Oxid. Met., 2012, vol. 77, pp. 85–92.

    Article  CAS  Google Scholar 

  3. S.K. Samanta, S.K. Mitra, and T.K. Pal: Mater. Sci. Eng. A., 2006, vol. 430, pp. 242–47.

    Article  CAS  Google Scholar 

  4. G.-J. Cai and C.-S. Li: Mater. Corros., 2015, vol. 66, pp. 1445–55.

    Article  CAS  Google Scholar 

  5. Y. Watanabe, V. Kain, T. Tonozuka, T. Shoji, T. Kondo, and F. Masuyama: Scripta Mater., 2000, vol. 42, pp. 307–12.

    Article  CAS  Google Scholar 

  6. Y.C. Lu and M.B. Ives: Corros. Sci., 1995, vol. 37, pp. 145–55.

    Article  CAS  Google Scholar 

  7. N. Kojola, S. Ekerot, M. Andersson, and P.G. Jönsson: Ironmak. Steelmak., 2011, vol. 38, pp. 1–11.

    Article  CAS  Google Scholar 

  8. A. Memarpour, V. Brabie, and P. Jönsson: Ironmak. Steelmak., 2011, vol. 38, pp. 229–39.

    Article  CAS  Google Scholar 

  9. A. Katsumata and H. Todoroki: I.& SM., 2002, pp. 51–59.

  10. S.N. Singh: Metall. Mater. Trans. B., 1974, vol. 5B, pp. 2165–78.

    Article  Google Scholar 

  11. N. Kojola, S. Ekerot, and P. Jönsson: Ironmak. Steelmak., 2011, vol. 38, pp. 81–89.

    Article  CAS  Google Scholar 

  12. H. Bai and B.G. Thomas: Metall. Mater. Trans. B., 2001, vol. 32B, pp. 707–22.

    Article  CAS  Google Scholar 

  13. K. Nakajima and S. Mizoguchi: Metall. Mater. Trans. B., 2001, vol. 32B, pp. 629–41.

    Article  CAS  Google Scholar 

  14. H. Shibata, H. Yin, and T. Emi: Philos. Trans. R. Soc. Lond. A., 1998, vol. 356, pp. 957–66.

    Article  CAS  Google Scholar 

  15. H. Yin, H. Shibata, T. Emi, and M. Suzuki: ISIJ Int., 1997, vol. 37, pp. 946–55.

    Article  CAS  Google Scholar 

  16. H. Yin, H. Shibata, T. Emi, and M. Suzuki: ISIJ Int., 1997, vol. 37, pp. 936–45.

    Article  CAS  Google Scholar 

  17. G. Wang, A.V. Nguyen, S. Mitra, J.B. Joshi, G.J. Jameson, and G.M. Evans: Sep. Purif. Technol., 2016, vol. 170, pp. 155–72.

    Article  CAS  Google Scholar 

  18. G. Du, J. Li, Z.-B. Wang, and C.-B. Shi: Steel Res. Int., 2017, vol. 88, p. 1600185.

    Article  CAS  Google Scholar 

  19. J. Wikström, K. Nakajima, H. Shibata, A. Tilliander, and P. Jönsson: Ironmak. Steelmak., 2008, vol. 35, pp. 589–99.

    Article  CAS  Google Scholar 

  20. B. Coletti, B. Blanpain, S. Vantilt, and S. Sridhar: Metall. Mater. Trans. B., 2003, vol. 34B, pp. 533–38.

    Article  CAS  Google Scholar 

  21. Y. Kang, B. Sahebkar, P.R. Scheller, K. Morita, and D. Sichen: Metall. Mater. Trans. B., 2011, vol. 42B, pp. 522–34.

    Article  CAS  Google Scholar 

  22. S. Kimura, K. Nakajima, and S. Mizoguchi: Metall. Mater. Trans. B., 2001, vol. 32B, pp. 79–85.

    Article  CAS  Google Scholar 

  23. S. Vantilt, B. Coletti, B. Blanpain, J. Fransaer, and P. Wollants: ISIJ Int., 2004, vol. 44, pp. 1–10.

    Article  CAS  Google Scholar 

  24. H. Wang, B. Bai, S. Jiang, L. Sun, and Y. Wang: ISIJ Int., 2019, vol. 59, pp. 1259–65.

    Article  CAS  Google Scholar 

  25. W. Bin and S. Bo: Steel Res. Int., 2012, vol. 83, pp. 487–95.

    Article  CAS  Google Scholar 

  26. J. Appelberg, K. Nakajima, H. Shibata, A. Tilliander, and P. Jönsson: Mater. Sci. Eng. A., 2008, vol. 495, pp. 330–4.

    Article  CAS  Google Scholar 

  27. V.N. Paunov, P.A. Kralchevsky, N.D. Denkov, and K. Nagayama: J. Collid. Interface Sci., 1993, vol. 157, pp. 100–12.

    Article  CAS  Google Scholar 

  28. W. Mu, N. Dogan, and K.S. Coley: Metall. Mater. Trans. B., 2017, vol. 48B, pp. 2379–88.

    Article  CAS  Google Scholar 

  29. W. Mu, N. Dogan, and K.S. Coley: Metall. Mater. Trans. B., 2017, vol. 48B, pp. 2092–2103.

    Article  CAS  Google Scholar 

  30. P.A. Chralchevsky and K. Nagayama: Particles at Fluid Interfaces and Membranes, 1st ed. Elsevier, New York, 2001.

    Google Scholar 

  31. K.D. Danov, P.A. Kralchevsky, B.N. Naydenov, and G. Brenn: J. Collid. Interface Sci., 2005, vol. 287, pp. 121–34.

    Article  CAS  Google Scholar 

  32. P.A. Kralchevsky, N.D. Denkov, and K.D. Danov: Langmuir., 2001, vol. 17, pp. 7694–7705.

    Article  CAS  Google Scholar 

  33. D. Stamou and C. Duschl: Phys. Rev. Lett., 2000, vol. 62, pp. 5263–72.

    CAS  Google Scholar 

  34. E.P. Lewandowski, M. Cavallaro, L. Botto, J.C. Bernate, V. Garbin, and K.J. Stebe: Langmuir., 2010, vol. 26, pp. 15142–54.

    Article  CAS  Google Scholar 

  35. M. Cavallaro, L. Botto, E.P. Lewandowski, M. Wang, and K.J. Stebe: Proc. Natl. Acad. Sci. USA., 2011, vol. 108, pp. 20923–28.

    Article  CAS  Google Scholar 

  36. S. Dasgupta, M. Katava, M. Faraj, T. Auth, and G. Gompper: Langmuir., 2014, vol. 30, pp. 11873–82.

    Article  CAS  Google Scholar 

  37. A. Dani, G. Keiser, M. Yeganeh, and C. Maldarelli: Langmuir., 2015, vol. 31, pp. 13290–302.

    Article  CAS  Google Scholar 

  38. C. Pozrikidis: J. Fluid Mech., 2007, vol. 575, pp. 333–57.

    Article  Google Scholar 

  39. P.T. Jones, D. Desmet, M. Guo, D. Durinck, F. Verhaeghe, J. van Dyck, J. Liu, B. Blanpain, and P. Wollants: Jeur. Ceram. Soc., 2007, vol. 27, pp. 3497–3507.

    Article  CAS  Google Scholar 

  40. J. Janis, R. Inoue, K. Andrey, N. Keiji, and P.G. Jonsson: Steel Res. Int., 2009, vol. 80, pp. 450–56.

    CAS  Google Scholar 

  41. P. Kralchevsky, V. Paunov, I. Ivanov, and K. Nagayama: J. Collid. Interface Sci., 1992, vol. 151, pp. 79–94.

    Article  Google Scholar 

  42. P.A. Kralchevsky, V.N. Paunov, N.D. Denkov, I.B. Ivanov, and K. Nagayama: J. Collid. Interface Sci., 1993, vol. 155, pp. 420–37.

    Article  CAS  Google Scholar 

  43. M.M. Nicolson: Math. Proc. Camb. Phil. Soc., 1949, vol. 45, pp. 288–95.

    Article  Google Scholar 

  44. D.Y. Chan, J.D. Henry, and L.R. White: J. Collid. Interface Sci., 1981, vol. 79, pp. 410–18.

    Article  CAS  Google Scholar 

  45. P.A. Kralchevsky and N.D. Denkov: Curr. Opin. Colloid. Interface Sci., 2001, vol. 6, pp. 383–401.

    Article  CAS  Google Scholar 

  46. P.A. Kralchevsky, N.D. Denkov, V.N. Paunov, O.D. Velev, I.B. Ivanov, H. Yoshimura, and K. Nagayama: J. Phys. Condens. Matter., 1994, vol. 6, pp. A395–402.

    Article  CAS  Google Scholar 

  47. Z. Berkovitch-Yellin: J. Am. Chem. Soc., 1985, vol. 107, pp. 8239–53.

    Article  CAS  Google Scholar 

  48. D. Aquilano, F. Otálora, L. Pastero, and J.M. García-Ruiz: Prog. Cryst. Growth Ch., 2016, vol. 62, pp. 227–51.

    Article  CAS  Google Scholar 

  49. L. Zheng, A. Malfliet, P. Wollants, B. Blanpain, and M. Guo: ISIJ Int., 2016, vol. 56, pp. 926–35.

    Article  CAS  Google Scholar 

  50. A. Vahed and D.A. Kay: Metall. Trans. B., 1976, vol. 7B, pp. 375–83.

    Article  CAS  Google Scholar 

  51. Q. Han, X. Feng, S. Liu, H. Niu, and Z. Tang: Metall. Trans. B., 1990, vol. 21B, pp. 295–302.

    Article  CAS  Google Scholar 

  52. H. Bärnighausen and G. Schiller: J. Less Common Met., 1985, vol. 110, pp. 385–90.

    Article  Google Scholar 

  53. B. J. Keene and K. C. Mills: Slag Atlas: Contact Angle and Work of Adhesion Between Ferrous Melts and Non-metallic Solid. Verein Deutsscher Eisenhuttenleute (VDEh), Verlag stahleisen GmbH, 1995.

  54. D.R. Lide: CRC handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 84th ed. CRC, Boca Raton, London, 2003.

    Google Scholar 

  55. F. Pan, J. Zhang, H.-L. Chen, Y.-H. Su, Y.-H. Su, and W.-S. Hwang: Sci. Rep., 2016, vol. 6, p. 35843.

    Article  CAS  Google Scholar 

  56. T. Du, L. Wang, A. Liu, Y. Wu, and Y. Zhang: J. Alloys Compd., 1993, vol. 193, pp. 38–40.

    Article  CAS  Google Scholar 

  57. Y.V. Kalinin, V. Berejnov, and R.E. Thorne: Langmuir., 2009, vol. 25, pp. 5391–97.

    Article  CAS  Google Scholar 

  58. A. Sharan, T. Nagasaka, and A.W. Cramb: Metall. Mater. Trans. B., 1994, vol. 25B, pp. 939–42.

    Article  CAS  Google Scholar 

  59. K. Mori, M. Kishimoto, and T. Shimose: J. Jpn. Inst. Met., 1975, vol. 39, pp. 1301–07.

    Article  CAS  Google Scholar 

  60. Z. Qiu, A. Malfliet, M. Guo, and B. Blanpain: ISIJ Int., 2021, vol. 61, pp. 2400409.

    Article  CAS  Google Scholar 

  61. M. Jiang, X.-H. Wang, J.-J. Pak, and P. Yuan: Metall. Mater. Trans. B., 2014, vol. 45B, pp. 1656–65.

    Article  CAS  Google Scholar 

  62. J.T. Petkov, N.D. Denkov, K.D. Danov, O.D. Velev, R. Aust, and F. Durst: J. Collid. Interface Sci., 1995, vol. 172, pp. 147–54.

    Article  CAS  Google Scholar 

  63. M. Korolczuk-Hejnak: High Temp., 2014, vol. 52, pp. 667–74.

    Article  CAS  Google Scholar 

  64. I.V. Sterkhova, L.V. Kamaeva, and V.I. Lad’yanov: High Temp., 2014, vol. 52, pp. 814–20.

    Article  CAS  Google Scholar 

  65. R. Dimova, K. Danov, B. Pouligny, and I.B. Ivanov: J. Collid. Interface Sci., 2000, vol. 226, pp. 35–43.

    Article  CAS  Google Scholar 

  66. N.D. Vassileva, D. van den Ende, F. Mugele, and J. Mellema: Langmuir., 2005, vol. 21, pp. 11190–200.

    Article  CAS  Google Scholar 

  67. M.P. Boneva, N.C. Christov, K.D. Danov, and P.A. Kralchevsky: Phys. Chem. Chem. Phys., 2007, vol. 9, pp. 6371–84.

    Article  CAS  Google Scholar 

  68. J. Ally and A. Amirfazli: Colloid. Surface. A., 2010, vol. 360, pp. 120–28.

    Article  CAS  Google Scholar 

  69. J.C. Loudet, A.G. Yodh, and B. Pouligny: Phys Rev Lett., 2006, vol. 97, p. 018304.

    Article  CAS  Google Scholar 

  70. J.C. Loudet and B. Pouligny: Europhys. Lett., 2009, vol. 85, p. 28003.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the China Scholarship Council (CSC) for financial support (File No. 201706080018).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zilong Qiu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Z., Malfliet, A., Blanpain, B. et al. Capillary Interaction Between Micron-Sized Ce2O3 Inclusions at the Ar Gas/Liquid Steel Interface. Metall Mater Trans B 53, 1775–1791 (2022). https://doi.org/10.1007/s11663-022-02486-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02486-6

Navigation