Skip to main content
Log in

A comparison between Theobroma cacao L. zygotic embryogenesis and somatic embryogenesis from floral explants

  • Developmental Biology/Morphogenesis
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

In order to improve the late phases of Theobroma cacao L. embryogenesis from tissues of maternal origin, zygotic embryogenesis and somatic embryogenesis were compared, with respect to morphological, histological, and physiological parameters. Zygotic embryogenesis could be divided into three steps: (a) embryogenesis sensu stricto, (b) a growth period in which cotyledonary embryos reached their final dimensions, and (c) a maturation period in which embryos accumulated protein and starch reserves, dehydrated to a water content equal to 30%, and underwent a modification in soluble sugar composition. Monosaccharides and sucrose contents decreased to the benefit of the oligosaccharides raffinose and stachyose. The formation of somatic embryos by use of basic protocols was studied to define the limiting factors that could lie behind their poor development. Morphological abnormalities of somatic embryos, which represented 80% of the total population, were described. A histological study showed that somatic embryos lacked starch and protein reserves; moreover, their water content was much higher than that of their zygotic counterparts. Introducing a growth period into the culture protocol made for better embryo development. Adding sucrose and abscisic acid to the maturation medium was effective in increasing reserve synthesis and resulted in higher germination, conversion, and acclimatization rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, C. A.; Fjerstad, M. C.; Rinne, R. W. Characteristics of soybean seed maturation: necessity for slow dehydration. Crop Sci. 23:265–267; 1983.

    Article  Google Scholar 

  • Aguilar, M. E.; Villalobos, V. M.; Vasquez, N. Production of cocoa plants (Theobroma cacao L.) via micrografting of somatic embryos. In Vitro Cell. Dev. Biol. 28P:15–19; 1992.

    Google Scholar 

  • Alemanno, L.; Berthouly, M.; Michaux-Ferrière, N. Histology of somatic embryogenesis from floral tissues in Theobroma cacao L. Plant Cell Tissue Organ Cult. 46:187–194; 1996.

    Article  Google Scholar 

  • Attree, S. M.; Fowke, L. C. Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell Tissue Organ Cult. 35:1–35; 1993.

    Article  CAS  Google Scholar 

  • Attree, S. M.; Pomeroy, M. K.; Fowke, L. C. Development of white spruce (Picea glauca (Moench) Voss) somatic embryos during culture with abscisic acid and osmoticum, and their tolerance to drying and frozen storage. J. Exp. Bot. 46:433–439; 1995.

    Article  CAS  Google Scholar 

  • Bouharmont, J. Recherches cytologiques sur la fructification et l’incompatibilité chez Theobroma cacao L. Publ. Inst. Natl. l’Etude Agron. Congo. Série Scientifique. 89:18–39; 1960.

    Google Scholar 

  • Brisibe, E. A.; Miyake, H.; Taniguchi, T., et al. Abscisic acid and high osmoticum regulation of development and storage reserve accumulation in sugarcane somatic embryos. Jpn. J. Crop Sci. 63:689–698; 1994.

    CAS  Google Scholar 

  • Buchheim, J. A.; Colburn, S. M.; Ranch, J. P. Maturation of soybean somatic embryos and the transition to plantlet growth. Plant Physiol. 89:768–775; 1989.

    PubMed  CAS  Google Scholar 

  • Carman, J. G. Improved somatic embryogenesis in wheat by partial simulation of the in-ovulo oxygen growth regulator and desiccation environments. Planta 175:417–424; 1988.

    Article  CAS  Google Scholar 

  • Crouch, M. L. Non-zygotic embryos of Brassica napus L. contain embryospecific storage proteins. Planta 156:520–524; 1982.

    Article  CAS  Google Scholar 

  • Duhem, K.; Le Mercier, N.; Boxus, P. H. Données nouvelles sur l’induction et le développement d’embryons somatiques chez Theobroma cacao L. Café, Cacao, Thé 33(1):9–14; 1989.

    Google Scholar 

  • Esan, E. B. Tissue culture studies on cocoa (Theobroma cacao L.). A supplementation of current research. In: Proceedings, Fifth International Conference on Cacao Research Idaban, Nigeria; 1977:116–125.

  • Etienne, H.; Sotta, B.; Montoro, P., et al. Comparison of endogenous ABA and IAA contents in somatic and zygotic embryos of Hevea brasiliensis. Plant Sci. 92:111–119; 1993.

    Article  CAS  Google Scholar 

  • Etienne, H.; Lartaud, M.; Michaux-Ferrière, N., et al. Improvement of somatic embryogenesis in Hevea brasiliensis (Müll. Arg.) using the temporary immersion technique. In Vitro Cell. Dev. Biol. Plant (in press) 1997.

  • Farrant, M.; Pammenter, W.; Berjak, P. Seed development in relation to desiccation tolerance: a comparison between desiccation-sensitive (recalcitrant) seeds of Avicennia marina and desiccation-tolerant types. Seed Sci. Res. 3:1–13; 1993.

    Google Scholar 

  • Faure, O. Embryons somatiques de Vitis rupestris et embryons zygotiques de Vitis sp.: morphologie, histologie, histochimie et développement. Can. J. Bot. 68:2305–2315; 1990.

    Google Scholar 

  • Figueira, A.; Janick, J. Development of nucellar somatic embryos of Theobroma cacao. Acta Hortic. 336:231–236; 1993.

    Google Scholar 

  • Figueira, A.; Janick, J. Somatic embryogenesis in cacao (Theobroma cacao L.). In: Jain, S. M.; Gupta, P. K.; Newton, R. J., ed. Somatic embryogenesis in woody plants. Vol. 2. Angiosperms. Dordrecht, Boston, London: Kluwer Academic Publishers; 1995:291–310.

    Google Scholar 

  • Finch-Savage, W. E.; Blake, P. S. Indeterminate development in desiccation-sensitive seeds of Quercus robur L. Seed Sci. Res. 4:127–133; 1994.

    Google Scholar 

  • Fisher, D. B. Protein staining of ribboned epon sections for light microscopy. Histochemie 16:92–96; 1968.

    Article  PubMed  CAS  Google Scholar 

  • Fu, J. R.; Jin, J. P.; Peng, Y. F., et al. Desiccation tolerance in two species with recalcitrant seeds Clausenia lansium (Lour.) and Litchi chinensis (Sonn.). Seed Sci. Res. 4:257–261; 1994.

    Google Scholar 

  • Goebel-Tourand, I.; Mauro, M. C.; Sossountzov, L., et al. Arrest of somatic embryo development in grapevine: histological characterization and the effect of ABA, BAP and zeatin in stimulating plantlet development. Plant Cell Tissue Organ Cult. 33:91–103; 1993.

    Article  CAS  Google Scholar 

  • Gutmann, M.; von Aderkas, P.; Label, P., et al. Effects of abscisic acid on somatic embryo maturation of hybrid larch. J. Exp. Bot. 47:1905–1918; 1996.

    Article  CAS  Google Scholar 

  • Hakman, I.; Stabel, P.; Engström, P., et al. Storage protein accumulation during zygotic and somatic embryo development in Picea abies (Norway spruce). Physiol. Plant. 80:441–445; 1990.

    Article  CAS  Google Scholar 

  • Hocher, V.; Sotta, B.; Maldiney, R., et al. Changes in abscisic acid and its β-D-glucopyranosyl ester levels during tomato (Lycopersicon esculentum Mill.) seed development. Plant Cell Rep. 10:444–447; 1991.

    Article  CAS  Google Scholar 

  • Kapik, R. H.; Dinus, R. J.; Dean, J. F. D. Abscisic acid and zygotic embryogenesis in Pinus taeda. Tree Physiol. 7–8:485–490; 1995.

    Google Scholar 

  • Kermode, A. R.; Bewley, J. D. The role of maturation drying in the transition from seed development to germination. I. Acquisition of desiccationtolerance and germinability during development of Ricinus communis L. seeds. J. Exp. Bot. 36:1906–1915; 1985.

    Article  Google Scholar 

  • Koster, K. L.; Leopold, A. C. Sugars and desiccation tolerance in seeds. Plant Physiol. 88:829–832; 1988.

    PubMed  CAS  Google Scholar 

  • Krochko, J. E.; Bantroch, D. J.; Greenwood, J. S., et al. Seed storage proteins in developing somatic embryos of alfalfa: defects in accumulation compared to zygotic embryos. J. Exp. Bot. 45:699–708; 1994.

    Article  CAS  Google Scholar 

  • Lai, F. M.; McKersie, B. D. Regulation of starch and protein accumulation in alfalfa (Medicago sativa L.) somatic embryos. Plant Sci. 100:211–219; 1994.

    Article  CAS  Google Scholar 

  • Lang, A. R. G. Osmotic coefficients and water potentials of sodium chloride solutions from 0 to 40°C. Aust. J. Chem. 20:2017–2023; 1967.

    Article  CAS  Google Scholar 

  • Leal, I.; Misra, S.; Attree, S. M., et al. Effect of abscisic acid, osmoticum and desiccation on 11S storage protein gene expression in somatic embryos of white spruce. Plant Sci. 106:121–128; 1995.

    Article  CAS  Google Scholar 

  • Leprince, O.; Hendry, G. A. F.; McKersie, B. D. The mechanisms of desiccation tolerance in developing seeds. Seed Sci. Res. 3:231–246; 1993.

    Google Scholar 

  • Liu, L.; Hammond, E. G.; Wurtele, E. S. Accumulation of petroselinic acid in developing somatic carrot embryos. Phytochemistry 3:749–753; 1994.

    Article  Google Scholar 

  • Lopez-Baez, O.; Bollon, H.; Eskes, A., et al. Embryogenèse somatique de cacaoyer Theobroma cacao L. à partir de pièces florales. C. R. Acad. Sci. Paris 316:579–584; 1993.

    Google Scholar 

  • Martoja, R.; Martoja, M. Initiation aux techniques de l’histologie animale. Paris: Masson et Cie; 1967.

    Google Scholar 

  • McKersie, B. D.; Bowley, S. R. Synthetic seeds of alfalfa. In: Synseeds. Boca Raton, FL: CRC Press; 1993:231–255.

    Google Scholar 

  • Misra, S.; Attree, S. M.; Leal, I., et al. Effect of abscisic acid, osmoticum, and desiccation on synthesis of storage proteins during the development of white spruce somatic embryos. Ann. Bot. 71:11–22; 1993.

    Article  CAS  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–479; 1962.

    Article  CAS  Google Scholar 

  • Novak, F. J.; Donini, B.; Owusu, G. Somatic embryogenesis and in vitro plant development of cocoa (Theobroma cacao). In: Proceedings of the International Symposium on Nuclear Techniques and In Vitro Culture for Plant Improvement. International Atomic Energy Association, Vienna; 1986;443–449.

  • Pence, V. C. Abscisic acid in developing zygotic embryos of Theobroma cacao. Plant Physiol. 95:1291–1293; 1991.

    PubMed  CAS  Google Scholar 

  • Pence, V. C. Somatic embryogenesis in cacao (Theobroma cacao). In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry. Vol. 30. Somatic embryogenesis and synthetic seed I; 1995:455–467.

  • Pence, V. C.; Hasegawa, P. M.; Janick, J. Initiation and development of asexual embryos of Theobroma cacao in vitro. Zeitschrift Plfanzenphysiol. 98:1–4; 1980.

    CAS  Google Scholar 

  • Peschet, J. L.; Giacalone, A. Un nouveau concept en analyse des sucres: la chromatographie ionique couplée à l’ampèrométrie pulsée. Industrie Agricole Alimentaire 108:1–4; 1991.

    Google Scholar 

  • Rodriguez, A. P. M.; Wetzstein, H. Y. The effect of auxin type and concentration on pecan (Carya illinoinensis) somatic embryo morphology and subsequent conversion into plants. Plant Cell Rep. 13:607–611; 1994.

    Article  CAS  Google Scholar 

  • Söndahl, M. R.; Liu, S.; Bellato, C. M., et al. Cacao somatic embryogenesis. Acta Hortic. 336:245–248; 1993.

    Google Scholar 

  • Wang, Y. C.; Janick, J. Inducing precocious germination in asexual embryos of cacao. HorScience 19:839–841; 1984.

    Google Scholar 

  • Wetzstein, H. Y.; Baker, C. M. The relationship between somatic embryo morphology and conversion in peanut (Arachis hypogaea L.). Plant Sci. 92:81–89; 1993.

    Article  Google Scholar 

  • Xu, N.; Bewley, J. D. The role of abscisic acid in germination, storage protein synthesis and desiccation tolerance in alfalfa (Medicago sativa L.) seeds, as shown by inhibition of its synthesis by fluridone during development. J. Exp. Bot. 287:687–694; 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alemanno, L., Berthouly, M. & Michaux-Ferriere, N. A comparison between Theobroma cacao L. zygotic embryogenesis and somatic embryogenesis from floral explants. In Vitro Cell.Dev.Biol.-Plant 33, 163–172 (1997). https://doi.org/10.1007/s11627-997-0016-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-997-0016-8

Key words

Navigation