Skip to main content
Log in

High-frequency embryogenesis and regeneration of plants with high content of gentiopicroside from the Chinese medicinal plant Gentiana straminea Maxim.

  • Micropropagation
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Gentiana straminea Maxim. (MahuaQinjiao) is an important Chinese medicinal herb that is rich in secoiridoids. To increase the production of this plant, we have developed an efficient tissue culture system for high-frequency plant regeneration. We have also obtained plants with high secoiridoid monomer production through tissue culture and somatic embryogenesis. We have found that the MB medium is better than the B5 medium for callus induction. Calluses induced from immature seeds are superior to those from hypocotyls or young leaves in regeneration via somatic embryogenesis. We have also demonstrated that 2,4-dichlorophenoxyacetic acid is efficient for both callus induction and embryogenesis, indole-3-acetic acid is suitable for embryogenic callus proliferation, and N6-(benzyl)-adenine promotes both embryo development and the accumulation of gentiopicroside in the cultures. Regenerated plants have been selected for high gentiopicroside content. One plant contains 5.82% of gentiopicroside, which is higher than the control plants (1.20–3.73%). The regenerated plants are genetically more stable than the calluses based on both cytological and random amplified polymorphic DNA analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Ahloowalia B. S. Somatic embryogenesis and plant regeneration in Eruca sativa. Crop Sci. 27: 813–814; 1987.

    Article  Google Scholar 

  • Ammirato P. V. Embryogenesis. In: Evans D. V.; Sharp W. R.; Ammirato P. V.; Yamada Y. (eds) Handbook of plant cell culture, techniques for propagation and breeding, vol 1. Macmillan, New York, pp 82–83; 1983.

    Google Scholar 

  • Bach A.; Pawlowska B. Somatic embryogenesis in Gentiana pneumonanthe L. Acta Biol. Crac., Ser. Bot. 45: 79–86; 2003.

    Google Scholar 

  • Canhoto J. M.; Mesquita J. F.; Cruz G. S. Ultrastructural changes in cotyledons of pineapple guava (Myrtaceae) during somatic embryogenesis. Ann. Bot. 78: 513–521; 1996. doi:10.1006/anbo.1996.0149.

    Article  Google Scholar 

  • Charriere F.; Hahne G. Induction of embryogenesis versus caulogenesis on in vitro cultured sunflower (Halianthus annuum L.) immature zygotic embryo: role of plant growth regulators. Plant Sci. 137: 63–71; 1998. doi:10.1016/S0168-9452(98)00128-9.

    Article  CAS  Google Scholar 

  • Cruz G. S.; Canhoto J. M.; Abreu M. A. V. Somatic embryogenesis and plant regeneration from zygotic embryos of Feijoa sellowiana Berg. Plant Sci. 66: 263–270; 1990. doi:10.1016/0168-9452(90)90212–7.

    Article  CAS  Google Scholar 

  • Dodeman V. L.; Ducreux G.; Kreis M. Zygotic embryogenesis versus somatic embryogenesis. J. Exp. Bot. 48: 1493–1509; 1997.

    CAS  Google Scholar 

  • Doğramaci-Altuntepe M.; Peterson T. S.; Jauhar P. P. Anther culture-derived regenerants of durum wheat and their cytological characterization. J. Heredity 92: 56–64; 2001. doi:10.1093/jhered/92.1.56.

    Article  Google Scholar 

  • Doyle J. J.; Doyle J. I. Isolation of plant DNA from fresh tissue. Focus 12: 13–15; 1990.

    Google Scholar 

  • Eapen S.; George L. Somatic embryogenesis in peanut: influence of growth regulators and sugars. Plant Cell Tissue Organ Cult. 35: 151–156; 1993. doi:10.1007/BF00032964.

    Article  CAS  Google Scholar 

  • Evans D. A. Somaclonal variation-genetic basis and breeding applications. Trends Genet. 5: 46–50; 1989. doi:10.1016/0168-9525(89)90021-8.

    Article  CAS  PubMed  Google Scholar 

  • Fiuk A.; Rajkewicz M.; Rybczynski J. J. In vitro culture of Gentiana kurroo Royle. Biotechnologia 3: 267–274; 2003.

    Google Scholar 

  • Fulzele D. P.; Satdeve R. K. Somatic embryogenesis, plant regeneration, and evaluation of camptochecin content in Nothapodytes foetida. In Vitro Cell. Dev. Biol. Plant 39: 212–216; 2003. doi:10.1079/IVP2002368.

    Article  CAS  Google Scholar 

  • Gamborg O. L.; Miller R. A.; Ojina K. Nutritional requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50: 151–158; 1968. doi:10.1016/0014-4827(68)90403-5.

    Article  PubMed  Google Scholar 

  • Gill R.; Ozias-Akins P. Thidiazuron-induced highly morphogenic calli and high frequency regeneration of fertile peanut (Arachis hypogaea L.) plants. In Vitro Cell. Dev. Biol. Plant 35: 445–450; 1999. doi:10.1007/s11627-999-0066-1.

    Article  Google Scholar 

  • Guo B.; Gao M.; Liu C. Z. In vitro propagation of an endangered medicinal plant Saussurea involucrata Kar. et Kir. Plant Cell. Rep. 26: 261–265; 2007. doi:10.1007/s00299-006-0230-6.

    Article  CAS  PubMed  Google Scholar 

  • He T. N.; Chen S. L.; Liu J. Q.; Hong D. Y. Embryology of Gentiana striata (Gentianaceae). Acta Botanica Boreali-Occidentalla Sinica 20: 960–967; 2000.

    Google Scholar 

  • Inouye H.; Nakamura Y. Studies on monoterpene glucosides and related natural products. XVI. Occurrence of secoiridoid glucosides in gentianaceous plants especially in the genera Gentiana and Swertia. Yakugaku Zasshi 91: 755–759; 1971.

    CAS  PubMed  Google Scholar 

  • Kondo Y.; Takano F.; Hojo H. Suppression of chemically and immunologically induced hepatic injuries by gentiopicroside in mice. Planta Med. 60: 414; 1994. doi:10.1055/s-2006-959521.

    Article  CAS  PubMed  Google Scholar 

  • Lee K. P.; Lee D. W. Somatic embryogenesis and plant regeneration from seeds of wild Dicentra spectabilis (L.) Lem. Plant Cell. Rep. 22: 105–109; 2003. doi:10.1007/s00299-003-0642-5.

    Article  CAS  PubMed  Google Scholar 

  • Lee M.; Phillips R. L. The chromosomal basis of somaclonal variation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39: 413–437; 1988. doi:10.1146/annurev.pp.39.060188.002213.

    Article  Google Scholar 

  • Li H.; Wang Y. Z. Embryological studies in Gentiana macrophylla. Acta Botanica Boreali-Occidentalla Sinica 14: 243–248; 1994.

    Google Scholar 

  • Liu H.; Wang K. T.; Zhao Y. K.; Zhang H. Y.; Chen X. G.; Hu Z. D. Identification and determination of active components in Gentiana rigescens Franch. by micellar electrokinetic chromatography. J. High Resolut. Chromatogr. 23: 697–698; 2000. doi:10.1002/1521-4168(20001201)23:12<697::AID-JHRC697>3.0.CO;2-D.

    Article  Google Scholar 

  • Ma X.; Chen X. G.; Hu Z. D. Gentiopicroside content comparative of eight species of Qinjiao produced in Gansu province. Journal of Chinese Medical Materials 26: 85–86; 2003.

    Google Scholar 

  • Miku; a A.; Fiuk A.; Rybczynski J. J. Induction, maintenance and preservation of embryogenic competence of Gentiana cruciata L. cultures. Acta Biol. Crac. 47: 227–236; 2005a.

    Google Scholar 

  • Miku; a A.; Rybczynski J. J. Somatic embryogenesis of Gentiana genus I. The effect of the preculture treatment and primary explant origin on somatic embryogenesis of Gentiana cruciate L., G. pannonica Scop., and G tibetica King. Acta Physiol. Plant 23: 15–25; 2001. doi:10.1007/s11738-001-0017-x.

    Article  Google Scholar 

  • Miku; a A.; Tykarska T.; Mieczyslaw K.; Rybczynski J. J. Somatic embryogenesis of Gentiana cruciata L.: histological and ultrastructural changes in seedling hypocotyls explant. In Vitro Cell. Dev. Biol. Plant 41: 686–694; 2005b. doi:10.1079/IVP2005678.

    Google Scholar 

  • Miku; a A.; Tykarska T.; Zielin S.; Kuras M.; Rybczynski J. J. Ultrastructural changes in zygotic embryos of Gentiana punctata L. during callus formation and somatic embryogenesis. Acta Biol. Crac., Ser. Bot. 46: 1–12; 2004.

    Google Scholar 

  • Mithila J.; Hall J. C.; Victor J. M. R.; Saxena P. K. Thidiazuron induces shoot organogenesis at low concentrations and somatic embryogenesis at high concentrations on leaf and petiole explants of African violet (Saintpaulia ionantha Wendl.). Plant Cell Rep. 21: 408–414; 2003.

    CAS  PubMed  Google Scholar 

  • Miyakawa T.; Osnima T.; Hirayama H.; Sayara K.; Ma L.; Wu F.; Song W. Z. Determination of two main bitter secoiridoid glycosides in Gentianaceae. Chinese Journal of Pharmaceutical Analysis 17: 241; 1997.

    Google Scholar 

  • Mohiuddin A. K. M.; Chowdhury M. K. U.; Abdullah Z. C.; Harikrishna K.; Napis S. Factors affecting in vitro adventitious shoot regeneration of muskmelon (Cucumis melo L.) cv birdie. Sci. Int. 10: 143–146; 1998.

    CAS  Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassays fro tobacco tissue cultures. Physiol. Plant 15: 473–497; 1962. doi:10.1111/j.1399-3054.1962.tb08052.x.

    Article  CAS  Google Scholar 

  • Ørnstrup H.; Mrlgaard J. P.; Farestveit B. Somatic embryogenesis and plant regeneration from cell suspensions of Exacum affine. Plant Cell Tissue Organ Cult. 35: 37–41; 1993. doi:10.1007/BF00043937.

    Article  Google Scholar 

  • Puigderrajols P.; Mir G.; Molinas M. Ultrastructure of early secondary embryogenesis by multicellular and unicellular pathways in Cork Oak (Quercus suber L.). Ann. Bot. 87: 179–189; 2001. doi:10.1006/anbo.2000.1317.

    Article  Google Scholar 

  • Sesterhenn K.; Distl M.; Wink M. Occurrence of iridoid glycosides in in vitro cultures and intact plants of Scrophularia nodosa L. Plant Cell Rep. 26: 365–371; 2007. doi:10.1007/s00299-006-0233-3.

    Article  CAS  PubMed  Google Scholar 

  • Sharma P.; Koche V.; Quraishi A.; Mishra S. K. Somatic embryogenesis in Buchanania lanzan spreng. In Vitro Cell. Dev. Biol. Plant 41: 645–647; 2005. doi:10.1079/IVP2005680.

    Article  Google Scholar 

  • Su Y. J.; Chen J. T.; Chang W. C. Efficient and repetitive production of leaf-derived somatic embryos of Oncidium. Biol. Plant 50: 107–110; 2005. doi:10.1007/s10535-005-0081-y.

    Article  Google Scholar 

  • Sunandakumari C.; Zhang C. L.; Martin K. P.; Slater A.; Madhusoodanan P. V. Effect of auxins on indirect in vitro morphogenesis and expression of gusA transgene in a lectinaceous medicinal plant, Euphorbia nivulia Buch-Ham. In Vitro Cell. Dev. Biol. Plant 41: 695–699; 2005. doi:10.1079/IVP2005651.

    Article  CAS  Google Scholar 

  • Tabira H. Development of micropropagation system of Gentiana triflora. International Horticultural Congress, Kyoto, pp 186–187; 1994.

    Google Scholar 

  • Verdeil J. L.; Hocher V.; Huet C.; Grosdemange F.; Escoute J.; Ferriere N.; Nicole M. Ultrastructural changes in coconut calli associated with the acquisition of embryogenic competence. Ann. Bot. 88: 9–18; 2001. doi:10.1006/anbo.2001.1408.

    Article  Google Scholar 

  • Wang N.; Zhou L. General situation of chemical components studying of Gentiana genus. Shangxi For. Sci. Technol. 3: 71–78; 2001.

    Google Scholar 

  • Wink M. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64: 3–19; 2003. doi:10.1016/S0031-9422(03)00300-5.

    Article  CAS  PubMed  Google Scholar 

  • Xia G. M.; Chen H. M. Plant regeneration from intergeneric somatic hybridization between Triticum aestivum and Leymus chinensis. Plant Sci. 120: 197–203; 1996. doi:10.1016/S0168-9452(96)04492-5.

    Article  CAS  Google Scholar 

  • Xia G. M.; Li Z. Y.; Wang S. L.; Xiang F. N.; Liu J. Y.; Chen P. D.; Liu D. J. Asymmetric somatic hybridization between haploid wheat and UV irradiated Haynaldia villosa. Plant Sci. 37: 217–223; 1998.

    Google Scholar 

  • Xiang F. N.; Xia G. M.; Chen H. M. Effect of UV dosage on somatic hybridization between common wheat (Triticum aestivum L.) and Avena sativa L. Plant Sci. 164: 697–707; 2003. doi:10.1016/S0168-9452(03)00021-9.

    Article  CAS  Google Scholar 

  • Xiang F. N.; Xing M. Q.; Xia G. M.; Chen H. M. Tissue culture and antihepatitis constituent in calli of Swertia franchetiana H. Smith. Bulletin Bot. Res. 19: 256–259; 1999.

    Google Scholar 

  • Yamammura J.; Konishima T.; Sawada T. Biologically active principles of crude drugs, pharmacological actions of Swertia japonica extracts, sweriamarin and gentianine. Yakugaku Zasshi 98: 1446; 1978.

    Google Scholar 

  • Yeung E. C. Structural and developmental patterns in somatic embryogenesis. In: Thorpe T. A. (ed) In vitro embryogenesis in plants. Kluwer Academic, Dordrecht, pp 205–247; 1995.

    Google Scholar 

Download references

Acknowledgments

This study was supported by the National Basic Research Program of China, No. 2007CB948203; the National Natural Science Foundation of China, Nos. 30470154 and 30771116; New Century Training Program Foundation for Talents by the Ministry of Education, No. NCET-05-0581; and the Doctor Station Foundation Fellowship Chinese Natural Education Ministry, No. 20050422015. The authors are grateful to Roberta Greenwood and Weichang Yu for editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengning Xiang or Guangmin Xia.

Additional information

Editor: Neftali Ochoa-Alejo

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, Y., Liu, Y., Liu, Z. et al. High-frequency embryogenesis and regeneration of plants with high content of gentiopicroside from the Chinese medicinal plant Gentiana straminea Maxim.. In Vitro Cell.Dev.Biol.-Plant 45, 730–739 (2009). https://doi.org/10.1007/s11627-009-9225-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-009-9225-7

Keywords

Navigation