Skip to main content

Advertisement

Log in

Preparation and characterization of proton-conducting polymer electrolyte based on PVA, amino acid proline, and NH4Cl and its applications to electrochemical devices

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Biodegradable solid polymer electrolytes based on PVA (polyvinyl alcohol) and amino acid (proline) with different molar mass percentages of ammonium chloride (NH4Cl) were prepared by solution-casting technique using distilled water as solvent. Their structural, thermal, vibrational, and electrical properties were studied. XRD analysis confirms the amorphous nature of the polymer electrolytes. DSC measurements show a decrease in Tg with increasing salt concentration. The FTIR analysis reveals the complex formation between the PVA, proline, and ammonium chloride. Transference numbers for the proton-conducting polymer electrolytes have been measured. The maximum ionic conductivity has been found to be 7.01 × 10−4 S/cm at ambient temperature for 75 Mwt% PVA;25 Mwt% proline:0.3 (m.m.%) of NH4Cl polymer electrolyte using AC impedance analyzer. The temperature-dependent conductivity of the polymer membranes obeys Arrhenius behavior. The highest ionic conductivity polymer electrolyte has low activation energy of 0.07 eV among the prepared polymer electrolytes. An electrochemical stability window of 3.10 V has been measured using linear sweep voltammetry for the highest ionic conducting membrane. The highest conductivity polymer electrolyte 75 Mwt% PVA:25 Mwt% proline:0.3 (m.m.%) NH4Cl has been used to construct a primary proton battery and fuel cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Vinoth Pandi D, Selvasekarapandian S, Bhuvaneswari R, Premalatha M, Monisha S, Arunkumar D, Junichi K (2016) Development and characterization of proton conducting polymer electrolyte based on PVA, amino acid glycine and NH4SCN. Solid State Ionics 298:15–22

    Article  CAS  Google Scholar 

  2. Rajendran S, Sivakumar M, Subadevi R (2004) Li–ion conduction of plasticized PVA solid polymer electrolytes complexed with various lithium salts. Solid State Ionics 167:335–339

    Article  CAS  Google Scholar 

  3. Ramya CS, Selvasekarapandian S, Hirankumar G, Savitha T, Angelo PC (2008) Investigation on dielectric relaxations of PVP–NH4SCN polymer electrolyte. J Non-Cryst Solids 354:1494–1502

    Article  CAS  Google Scholar 

  4. Agrawal SL, Markandey S, Mridula T, Mrigank Mauli D, Kamalesh P (2009) Dielectric relaxation studies on [PEO–SiO2]: NH4SCN nanocomposite polymer electrolyte films. J Mater Sci 44:6060–6068

    Article  CAS  Google Scholar 

  5. Priyanka B, Aradhana D (2009) Conductivity study of some polymer electrolytes based on polyacrylonitrile. Ionics 15:711–716

    Article  CAS  Google Scholar 

  6. Ramesh S, Wong KC (2009) Conductivity, dielectric behavior and thermal stability studies of lithium ion dissociation in poly (methylmethacrylate)-based gel polymer electrolytes. Ionics 15:249–254

    Article  CAS  Google Scholar 

  7. Ramesh S, Ng KY (2009) Characterization of polymer electrolytes based on high molecular weight PVC and Li2SO4. Curr Appl Phys 9:329–332

    Article  Google Scholar 

  8. Radha KP, Selvasekarapandian S, Karthikeyan S, Hema M, Sanjeeviraja C (2013) Synthesis and impedance analysis of proton-conducting polymer electrolyte PVA:NH4F. Ionics 19:1437–1447

    Article  CAS  Google Scholar 

  9. Siva devi S, Selvasekarapandian S, Karthikeyan S, Vijaya N, Kingslin Mary Genova F, Sanjeeviraja C (2013) Structural and AC impedance analysis of blend polymer electrolyte based on PVA and PAN. Int J Sci Res 2(10):1–3

    Google Scholar 

  10. Selvasekarapandian S, Hema M, Kawamura J, Kamishima O (2010) Characterization of PVA-NH4NO3 polymer electrolyte and its application in rechargeable proton battery. J Phys Soc Jpn 79:163–168

    Article  Google Scholar 

  11. Radha KP, Selvasekarapandian S (2012) Characterization of PVA: NH4F: ZrO2 composite polymer electrolytes. Int J Sci Res 1:118–119

    Google Scholar 

  12. Rajendran S, Sivakumar M, Subadevi R (2004) Investigations on the effect of various plasticizers in PVA–PMMA solid polymer blend electrolytes. Mater Lett 58:641–649

    Article  CAS  Google Scholar 

  13. Hirankumar G, Selvasekarapandian S, Kuwata N, Kawamura J, Hattori T (2005) Thermal, electrical and optical studies on the poly (vinyl alcohol) based polymer electrolytes. J Power Sources 144:262–267

    Article  CAS  Google Scholar 

  14. Hema M, Selvasekarapandian S, Arunkumar D, Sakunthala A, Nithya H (2009) FTIR, XRD and AC impedance spectroscopic study on PVA based polymer electrolyte doped with NH4X (X = Cl, Br, I). J Non-Cryst Solids 355:84–90

    Article  CAS  Google Scholar 

  15. Ramya CS, Selvasekarapandian S, Savitha T, Hirankumar G (2005) Transport mechanism of Cu-ion conducting PVA based solid polymer electrolyte. Ionics 11:436–441

    Article  CAS  Google Scholar 

  16. Hirankumar G, Selvasekarapandian S, Bhuvaneswari MS, Baskaran R, Vijayakumar M (2006) Ag+ ion transport studies in poly vinyl alcolhol based polymer electrolyte system. J Solid State Electrochem 10:193–197

    Article  CAS  Google Scholar 

  17. Kingslin Mary Genova F, Selvasekarapandian S, Vijaya N, Siva devi S, Premalatha M, Karthikeyan S (2017) Lithium ion conducting polymer electrolytes based on PVA–PAN doped with lithium triflate. Ionics 23:2727–2734

    Article  CAS  Google Scholar 

  18. Sikkanthar S, Karthikeyan S, Selvasekarapandian S, Arunkumar D, Nithya H, Kawamura J (2016) Structural, electrical conductivity and transport analysis of PAN–NH4Cl polymer electrolyte system. Ionics 22:1085–1094

    Article  CAS  Google Scholar 

  19. Monisha S, Selvasekarapandian S, Mathavan T, Milton Franklin Benial A, Sindhuja M, Karthikeyan S (2016) Preparation and characterization of biopolymer electrolyte based on cellulose acetate for potential applications in energy storage devices. J Mater Sci Mater Electron 27:9314–9324

    Article  CAS  Google Scholar 

  20. Boopathi G, Pugalendhi S, Selvasekarapandian S, Premalatha M, Monisha S, Aristatil G (2016) Development of proton conducting biopolymer membrane based on agar-agar for fuel cell. Ionics 23:2781–2790

    Article  CAS  Google Scholar 

  21. Bhuvaneswari R, Karthikeyan S, Selvasekarapandian S, VinothPandi D, Vijaya N, ArunAraichimani, Sanjeeviraja C (2014) Preparation and characterization of PVA complexed with amino acid proline. Ionics 21:387–399

    Article  CAS  Google Scholar 

  22. Hodge RM, Edward GH, Simon GP (1996) Water absorption and state of water in semicrystalline poly (vinyl alcohol) films. Polymer 37:1371–1376

    Article  CAS  Google Scholar 

  23. Agrawal SL, Arvind A (2004) DSC and conductivity studies on PVA based proton conducting gel electrolytes. Bult Mater Sci 27(6):523–527

    Article  CAS  Google Scholar 

  24. Selvalakshmi S, Vijaya N, Selvasekarapandian S, Premalatha M (2017) Biopolymer agar–agar doped with NH4SCN as solid polymer electrolyte for electrochemical cell applications. J Appl Polym Sci 134:44702–44711

    Article  CAS  Google Scholar 

  25. Premalatha M, Mathavan T, Selvasekarapandian S, Monisha S, Vinothpandi D, Selvalakshmi S (2016) Investigations on proton conducting biopolymer membranes based on tamarind seed polysaccharide incorporated with ammonium thiocyanate. J Non-Cryst Solids 453:131–140

    Article  CAS  Google Scholar 

  26. Sikkanthar S, Karthikeyan S, Selvasekarapandian S, Vinoth Pandi D, Nithya S, Sanjeeviraja C (2014) Electrical conductivity characterization of polyacrylonitrile-ammonium bromide polymer electrolyte system. J Solid State Electrochem 19:987–999

    Article  CAS  Google Scholar 

  27. Liew CW, Ramesh S, Arof AK (2014) A novel approach on ionic liquid–based poly (vinyl alcohol) proton conductive polymer electrolytes for fuel cell applications. Int J Hydrog Energy 39:2917–2928

    Article  CAS  Google Scholar 

  28. Kingslin Mary Genova F, Selvasekarapandian S, Karthikeyan S, Vijaya N, Pradeepa R, Siva devi S (2015) Study on blend polymer (PVA-PAN) doped with lithium bromide. Polym Sci Ser A 57:851–862

    Article  CAS  Google Scholar 

  29. Boukamp BA (1986) A non linear least squares fit procedure for analysis of immittance data of electrochemical systems. Solid State Ionics 20:31–44

    Article  CAS  Google Scholar 

  30. Vijaya N, Selvasekarapandian S, Hiran Kumar G, Karthikeyan S, Nithya H, Ramya CS, Prabhu M (2012) Structural, vibrational, thermal, and conductivity studies on proton-conducting polymer electrolyte based on poly (N-vinylpyrrolidone). Ionics 18:91–99

    Article  CAS  Google Scholar 

  31. Premalatha M, Vijaya N, Selvasekarapandian S (2016) Characterization of blend polymer PVA–PVP complexed with ammonium thiocyanate. Ionics 22:1299–1310

    Article  CAS  Google Scholar 

  32. Vijaya N, Selvasekarapandian S, Sornalatha M, Sujithra KS, Monisha S (2016) Proton-conducting biopolymer electrolytes based on pectin doped with NH4X (X = Cl, Br). Ionics 23(10):2799–2808

    Article  CAS  Google Scholar 

  33. Selvasekarapandian S, Baskaran R, Hema M (2005) Complex AC impedance, transference number and vibrational spectroscopy studies of proton conducting PVAc–NH4SCN polymer electrolytes. Physica B 357:412–419

    Article  CAS  Google Scholar 

  34. Rajeswari N, Selvasekarapandian S, Sanjeeviraja C, Kawamura J, Asath Bahadur S (2014) A study on polymer blend electrolyte based on PVA/PVP with proton salt. Polym Bull 71(5):1061–1080

    Article  CAS  Google Scholar 

  35. Premalatha M, Mathavan T, Selvasekarapandian S, Selvalakshmi S, Monisha S (2017) Incorporation of NH4Br in tamarind seed polysaccharide biopolymer and its potential use in electrochemical energy storage devices. Org Electron 50:418–425

    Article  CAS  Google Scholar 

  36. Tan W, Arof AK (2006) Transport properties of hexanoyl chitosan-based gel electrolyte. Ionics 12:149–152

    Article  CAS  Google Scholar 

  37. Kadir MFZ, Majid SR, Arof AK (2010) Plasticized–chitosan–PVA blend polymer electrolyte based proton battery. Electrochim Acta 55:1475–1482

    Article  CAS  Google Scholar 

  38. Mishra K, Rai DK (2013) Studies of a plasticized PEO + NH4PF6 proton-conducting polymer electrolyte system and its application in a proton battery. J Korean Phys Soc 62:311–319

    Article  CAS  Google Scholar 

  39. Monisha S, Mathavan T, Selvasekarapandian S, Milton Franklin Benial A, Aristatil G, Mani N, Premalatha M (2017) Investigation of biopolymer electrolyte based on cellulose acetate-ammonium nitrate for potential use in electrochemical devices. Carbohydr Polym 157:38–47

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Selvasekarapandian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemalatha, R., Alagar, M., Selvasekarapandian, S. et al. Preparation and characterization of proton-conducting polymer electrolyte based on PVA, amino acid proline, and NH4Cl and its applications to electrochemical devices. Ionics 25, 141–154 (2019). https://doi.org/10.1007/s11581-018-2564-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2564-9

Keywords

Navigation