Skip to main content

Advertisement

Log in

A review of polymer electrolytes: fundamental, approaches and applications

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this paper, we review different types of polymer electrolytes, recent approaches and technological applications of polymer electrolytes. The report first discusses the characteristics, advantages and applications for three types of polymer electrolytes: gel polymer electrolytes, solid polymer electrolytes and composite polymer electrolytes. Next, we discuss the features and performance of different polymer hosts based on some important and recently published literature. Recent progress of some approaches used in improving the performance of the polymer electrolytes is highlighted. The last part of the review includes the technological applications of some electrical energy storing/converting devices: electrochemical capacitors, batteries, fuel cells and dye-sensitized solar cells. It is also stressed that the technological advancement in the polymer electrolytes plays a pivotal role in the development of energy storing/converting systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

AFC:

Alkaline fuel cell

BL:

g-butyrolactone

CPE:

Composite polymer electrolyte

DBP:

Dibutyl phthalate

DEC:

Diethyl carbonate

DEP:

Diethyl phthalate

DMC:

Dimethyl carbonate

DMF:

Dimethyl formamide

DMFC:

Direct methanol fuel cell

DOA:

Diocthyl adipate

DSSC:

Dye-sensitized solar cell

EV:

Electric vehicles

ECW:

Electrochromic window

EC:

Ethylene carbonate

EDLC:

Electrical double-layer capacitor

FC:

Fuel cell

GPE:

Gel polymer electrolyte

GS:

Glycol sulfite

HEV:

Hybrid electric vehicle

Li2B4O7 :

Lithium tetraborate

LiCF3SO3 :

Lithium triflate

LiClO4 :

Lithium perchlorate

LiPF6 :

Lithium hexafluorophosphate

LiTFSI:

Lithium bis(trifluoromethane) sulfonimide

MCFC:

Molten carbonate fuel cell

MEC:

Methylethyl carbonate

MFC:

Microbial fuel cell

PAA:

Poly(acrylic acid)

PAFC:

Phosphoric acid fuel cell

PAN:

Poly(acrylonitrile)

PC:

Propylene carbonate

PCL:

Poly(ε-caprolactone)

PE:

Polymer electrolyte

PEFC:

Polymer electrolyte fuel cell

PEMA:

Poly(ethyl methacrylate)

PEMFC:

Proton exchange membrane fuel cell

PEO:

Poly(ethylene oxide)

PIL:

Protic ionic liquid

PMMA:

Poly(methyl methacrylate)

PVA:

Poly(vinyl alcohol)

PVC:

Poly(vinyl chloride)

PVdF:

Poly(vinylidene fluoride)

PVdF-HFP:

Poly(vinylidene fluoride-hexafluoropropylene)

RTIL:

Room temperature ionic liquid

SLI:

Start-light ignition

SOFC:

Solid oxide fuel cell

SPE:

Solid polymer electrolyte

References

  1. Ramesh S, Liew CW (2010) Investigation on the effects of addition of SiO2 nanoparticles on ionic conductivity, FTIR, and thermal properties of nanocomposite PMMA-LiCF3SO3-SiO2. Ionics 16:255–262

    Article  CAS  Google Scholar 

  2. Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14:589–589

    Article  CAS  Google Scholar 

  3. Shriver DF, Bruce PG (1995) In: Bruce PG (ed) Solid state electrochemistry. Cambridge University Press, Cambridge, p. 95

    Google Scholar 

  4. Ramesh S, Lu SC (2012) Enhancement of ionic conductivity and structural properties by BMIMTf ionic liquid in P(VdF-HFP)-based polymer electrolytes. J Appl Polym Sci 126:484–492

    Article  CAS  Google Scholar 

  5. Bruce PG (1995) Solid state electrochemistry. Cambridge University Press

  6. Kim JH, Kang MS, Kim YJ, Won J, Park NG, Kang YS (2004) Dye-sensitized nanocrystalline solar cells based on composite polymer electrolytes containing fumed silica nanoparticles. Chem Commun 14:1662–1663

  7. MacCallum JR, Vincent CA (1987) Polymer electrolytes reviews, vol 2. Elsevier, London

    Google Scholar 

  8. Scrosati B (1993) Applications of electroactive polymers. Chapman Hall, London

    Book  Google Scholar 

  9. Vincent CA (1987) Polymer electrolytes. Prog Solid State Chem 17:145–261

    Article  CAS  Google Scholar 

  10. Ramesh S, Liew CW, Morris E, Durairaj R (2010) Effect of PVC on ionic conductivity, crystallographic structural, morphological and thermal characterizations in PMMA PVC blend-based polymer electrolytes. Thermochim Acta 511:140–146

    Article  CAS  Google Scholar 

  11. Ramesh S, Uma O, Shanti R, Yi LJ, Ramesh K (2014) Preparation and characterization of poly (ethyl methacrylate) based polymer electrolytes doped with 1-butyl-3-methylimidazolium trifluoromethane-sulfonate. Measurement 48:263–273

    Article  Google Scholar 

  12. Sanchez JY, Alloinand F, Lepmi CP (1998) Polymeric materials in energy storage and conversion. Mol Cryst Liq Cryst 324:257–266

    Article  CAS  Google Scholar 

  13. Saadun NN, Ramesh S, Ramesh K (2014) Development and characterization of poly(1-vinylpyrrolidone-co-vinyl acetate) copolymer based polymer electrolytes. Sci World J 254215

  14. Susan MABH, Kaneko T, Noda A, Watanabe M (2005) Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J Am Chem Soc 127:4976–4983

    Article  CAS  Google Scholar 

  15. Gray FM (1991) Solid polymer electrolytes: fundamentals and technological applications. VCH Publishers, New York

    Google Scholar 

  16. Gray FM (1997) Polymer electrolytes, RSC materials monographs. The Royal Society of Chemistry, Cambridge, pp. 1–30

    Google Scholar 

  17. MacCallum JR, Vincent CA (1987) Polymer electrolyte reviews. Elsevier Applied Science, London, p. 141

    Google Scholar 

  18. Osman Z, Arof AK (2003) FTIR studies of chitosan acetate based polymer electrolytes. Electrochim Acta 48:993–999

    Article  CAS  Google Scholar 

  19. Idris NK, Aziz NAN, Zambri MSM, Zakaria NA, Isa MIN (2009) Ionic conductivity studies of chitosan-based polymer electrolytes doped with adipic acid. Ionics 15:643–646

    Article  CAS  Google Scholar 

  20. Kadir MFZ, Aspanut Z, Majid SR, Arof AK (2011) FTIR studies of plasticized poly(vinyl alcohol)–chitosan blend doped with NH4NO3 polymer electrolyte membrane. Spectrochim Acta A 78:1068–1074

    Article  CAS  Google Scholar 

  21. Khanmirzaei MH, Ramesh S (2013) Ionic transport and FTIR properties of lithium iodide doped biodegradable rice starch based polymer electrolytes. Int J Electrochem Sci 8:9977–9991

    CAS  Google Scholar 

  22. Khanmirzaei MH, Ramesh S (2014) Nanocomposite polymer electrolyte based on rice starch/ionic liquid/TiO2 nanoparticles for solar cell application. Measurement 58:68–72

    Article  Google Scholar 

  23. Liew CW, Ramesh S, Ramesh K, Arof AK (2012) Preparation and characterization of lithium ion conducting ionic liquid-based biodegradable corn starch polymer electrolytes. J Solid State Electrochem 16:1869–1875

    Article  CAS  Google Scholar 

  24. Liew CW, Ramesh S (2013) Studies on ionic liquid- based corn starch biopolymer electrolytes coupling with high ionic transport number. Cellulose 20:3227–3237

    Article  CAS  Google Scholar 

  25. Ramesh S, Liew CW, Arof AK (2011) Ion conducting corn starch biopolymer electrolytes doped with ionic liquid 1-butyl-3-methylimidazolium hexafluoro-phosphate. J Non-Cryst Solids 357:3654–3660

    Article  CAS  Google Scholar 

  26. Ramesh S, Shanti R, Morris E (2012) Exerted influence of deep eutectic solvent concentration in the room temperature ionic conductivity and thermal behavior of corn starch based polymer electrolytes. J Mol Liq 166:40–43

    Article  CAS  Google Scholar 

  27. Ramesh S, Shanti R, Morris E (2012) Studies on the thermal behavior of CS: LiTFSI: [Amim] Cl polymer electrolytes exerted by different [Amim] Cl content. Solid State Sci 14:182–186

    Article  CAS  Google Scholar 

  28. Teoh KH, Ramesh S, Arof AK (2012) Investigation on the effect of nanosilica towards corn starch lithium perchlorate based polymer electrolytes. J Solid State Electrochem 16:3165–3170

    Article  CAS  Google Scholar 

  29. Bloise AC, Tambelli CC, Franco RWA, Donoso JP, Magon CJ, Souza MF, Rosario AV, Pereira EC (2001) Nuclear magnetic resonance study of PEO-based composite polymer electrolytes. Electrochim Acta 46:1571–1579

    Article  CAS  Google Scholar 

  30. Stephan AM (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42:21–42

    Article  CAS  Google Scholar 

  31. Liew CW, Durairaj R, Ramesh S (2014) Rheological studies of PMMA PVC based polymer blend electrolytes with LiTFSI as doping salt. PLoS One 9:0102815

    Article  CAS  Google Scholar 

  32. Kam W, Liew CW, Lim JY, Ramesh S (2014) Electrical, structural, and thermal studies of antimony trioxide-doped poly(acrylic acid)-based composite polymer electrolytes. Ionics 20:665–674

    Article  CAS  Google Scholar 

  33. Feuillade G, Perche P (1975) Ion-conductive macromolecular gels and membranes for solid lithium cells. J Appl Electrochem 5:63–69

    Article  CAS  Google Scholar 

  34. Saikia D, Chen-Yang YW, Chen YT, Li YK, Lin SI (2008) Investigation of ionic conductivity of composite gel polymer electrolyte membranes based on P(VDF-HFP), LiClO4 and silica aerogel for lithium ion battery. Desalination 234:24–32

  35. Ramesh S, Liew CW, Ramesh K (2011) Evaluation and investigation on the effect of ionic liquid onto PMMA- PVC gel polymer blend electrolytes. J Non-Cryst Solids 357:2132–2138

    Article  CAS  Google Scholar 

  36. Adebahr J, Byrne N, Forsyth M, MacFarlane DR, Jacobsson P (2003) Enhancement of ion dynamics in PMMA-based gels with addition of TiO2 nano-particles. Electrochim Acta 48:2099–2103

    Article  CAS  Google Scholar 

  37. Nicotera I, Coppola L, Oliviero C, Castriota M, Cazzanelli E (2006) Investigation of ionic conduction and mechanical properties of PMMA–PVdF blend-based polymer electrolytes. Solid State Ionics 177:581–588

    Article  CAS  Google Scholar 

  38. Uma T, Mahalingam T, Stimming U (2005) Conductivity studies on poly(methyl methacrylate)–Li2SO4 polymer electrolyte systems. Mater Chem Phys 90:245–249

  39. Kim HS, Kum KS, Cho WI, Cho BW, Rhee HW (2003) Electrochemical and physical properties of composite polymer electrolyte of poly(methyl methacrylate) and poly(ethylene glycol diacrylate). J Power Sources 124:221–224

    Article  CAS  Google Scholar 

  40. Kim JK, Cheruvally G, Li X, Ahn JH, Ki KW, Ahn HJ (2008) Preparation and electrochemical characterization of electrospun, microporous membrane-based composite polymer electrolytes for lithium batteries. J Power Sources 178:815–820

    Article  CAS  Google Scholar 

  41. Zhang P, Yang LC, Li LL, Ding ML, Wu YP, Holze R (2011) Enhanced electrochemical and mechanical properties of P(VDF-HFP)-based composite polymer electrolytes with SiO2 nanowires. J Membr Sci 379:80–85

    Article  CAS  Google Scholar 

  42. Wright PV (1975) Electrical conductivity in ionic complexes of poly(ethylene oxide). Br Polym J 7:319–327

    Article  CAS  Google Scholar 

  43. Armand MB, Chabagno JM, Duclot, MJ (1979) In: Duclot MJ, Vashishta P, Mundy JM, Shenoy GK (eds) Fast ion transport in solids. North Holland, Amsterdam, p 131

  44. Ramesh S, Liew CW (2012) Exploration on nano-composite fumed silica-based composite polymer electrolytes with doping of ionic liquid. J Non-Cryst Solids 358:931–940

    Article  CAS  Google Scholar 

  45. Ahmad S, Ahmad S, Agnihotry SA (2005) Nanocomposite electrolytes with fumed silica in poly(methyl methacrylate): thermal, rheological and conductivity studies. J Power Sources 140:151–156

    Article  CAS  Google Scholar 

  46. Liew CW, Ramesh S, Durairaj R (2012) Impact of low viscosity ionic liquid on PMMA PVC LiTFSI polymer electrolytes based on Ac impedance, dielectric behavior and HATR FTIR characteristics. J Mater Res 27:2996–3004

    Article  CAS  Google Scholar 

  47. Rajendran S, Uma T (2000) Lithium Ion conduction in PVC-LiBF4 electrolytes gelled with PMMA. J Power Sources 88:282–285

    Article  CAS  Google Scholar 

  48. Ramesh S, Winie T, Arof AK (2007) Investigation of mechanical properties of polyvinyl chloride polyethylene oxide (PVC PEO) based polymer electrolytes for lithium polymer cells. Eur Polym J 43:1963–1968

    Article  CAS  Google Scholar 

  49. Raghavan SR, Riley MW, Fedkiw PS, Khan SA (1998) Composite polymer electrolytes based on poly(ethylene glycol) and hydrophobic fumed silica: dynamic rheology and microstructure. Chem Mater 10:244–251

    Article  CAS  Google Scholar 

  50. Quartarone E, Mustarelli P, Magistris A (1998) PEO-based composite polymer electrolytes. Solid State Ionics 110:1–14

    Article  CAS  Google Scholar 

  51. Itoh T, Ichikawa Y, Uno T, Kubo M, Yamamoto O (2003) Composite polymer electrolytes based on poly(ethylene oxide), hyperbranched polymer, BaTiO3 and LiN(CF3SO2)2. Solid State Ionics 156:393–399

    Article  CAS  Google Scholar 

  52. Hu J, Luo J, Wagner P, Conrad O, Agert C (2009) Anhydrous proton conducting membranes based on electron-deficient nanoparticles/PBI-OO/PFSA composites for high-temperature PEMFC. Electrochem Commun 11:2324–2327

    Article  CAS  Google Scholar 

  53. Hu J, Luo J, Wagner P, Agert C, Conrad O (2011) Thermal behaviours and single cell performance of PBI-OO/PFSA blend membranes composited with Lewis acid nanoparticles for intermediate temperature DMFC application. Fuel Cells 11:756–763

    Article  CAS  Google Scholar 

  54. Walls HJ, Zhou J, Yerian JA, Fedkiw PS, Khan SA, Stowe MK, Baker GL (2000) Fumed silica-based composite polymer electrolytes: synthesis, rheology, and electrochemistry. J Power Sources 89:156–162

    Article  CAS  Google Scholar 

  55. Wen Z, Itoh T, Uno T, Kubo M, Yamamoto O (2003) Thermal, electrical, and mechanical properties of composite polymer electrolytes based on cross-linked poly(ethylene oxide-co-propylene oxide) and ceramic filler. Solid State Ionics 160:141–148

    Article  CAS  Google Scholar 

  56. Ramesh S, Bing KN (2012) Conductivity, mechanical and thermal studies on PMMA based polymer electrolytes complexed with Li2B4O7 and PC. J Mater Eng Perform 21:89–94

    Article  CAS  Google Scholar 

  57. Capiglia C, Mustarelli P, Quartarone E, Tomasi C, Magistris A (1999) Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes. Solid State Ionics 118:73–79

    Article  CAS  Google Scholar 

  58. Luo J, Conrad O, Vankelecom IFJ (2013) Imidazolium methanesulfonate as a high temperature proton conductor. J Mater Chem A 1:2238–2247

    Article  CAS  Google Scholar 

  59. Hao J, Li X, Yu S, Jiang Y, Luo J, Shao Z, Yi B (2015) Development of proton-conducting membrane based on incorporating a proton conductor 1,2,4-triazolium methanesulfonate into the Nafion membrane. J Energy Chem 24:199–206

    Article  Google Scholar 

  60. Dai Y, Wang Y, Greenbaum SG, Bajue SA, Golodnitsky D, Ardel G, Strauss E, Peled E (1998) Electrical, thermal and NMR investigations of composite solid electrolyte based on PEO, LiI and high surface area inorganic oxides. Electrochim Acta 43:1557–1561

    Article  CAS  Google Scholar 

  61. Golodnitsky D, Ardel G, Strauss E, Peled E, Lareah Y, Rosenberg Y (1997) Conduction mechanism in concentrated LiIpolyethylene oxide Al2O3-based solid electrolytes. J Electrochem Soc 144:3484–3491

    Article  CAS  Google Scholar 

  62. Katsaros G, Stergiopoulos T, Arabatzis IM, Papadokostaki KG, Falaras P (2002) A solvent-free composite polymer/inorganic oxide electrolyte for high efficiency solid-state dye-sensitized solar cells. J Photochem Photobiol A 149:191–198

    Article  CAS  Google Scholar 

  63. Capuano F, Croce F, Scrosati B (1991) Composite polymer electrolytes. J Electrochem Soc 139:1918–1922

    Article  Google Scholar 

  64. Choi B, Shin K (1996) Effects of SiC fillers on the electrical and mechanical properties of (PEO)16LiClO4 electrolytes. Solid State Ionics 86–88:303–306

    Article  Google Scholar 

  65. Stevens JR, Wieczorek W (1996) Ionically conducting polyether composites. Can J Chem 74:2106–2113

    Article  CAS  Google Scholar 

  66. Yang X, Zhang F, Zhang L, Zhang T, Huang Y, Chen Y (2013) A high-performance graphene oxide-doped ion gel as gel polymer electrolyte for all-solid-state supercapacitor applications. Adv Funct Mater 23:3353–3360

    Article  CAS  Google Scholar 

  67. Song MK, Kim YT, Cho JY, Cho BW, Popov BN, Rhee HW (2004) Composite polymer electrolytes reinforced by non-woven fabrics. J Power Sources 125:10–16

    Article  CAS  Google Scholar 

  68. Rajendran S, Mahendran O, Kannan R (2002) Ionic conductivity studies in composite solid polymer electrolytes based on methylmethacrylate. J Phys Chem Solids 63:303–307

    Article  CAS  Google Scholar 

  69. Ramesh S, Yin TS, Liew CW (2011) Effect of dibutyl phthalate as plasticizer on high molecular weight poly (vinyl chloride) lithium tetraborate based solid polymer electrolytes. Ionics 17:705–713

    Article  CAS  Google Scholar 

  70. Yang CC, Lin SJ (2002) Alkaline composite PEO–PVA–glass-fibre-mat polymer electrolyte for Zn–air battery. J Power Sources 112:497–503

    Article  CAS  Google Scholar 

  71. Chen-Yang YW, Chen HC, Lin FJ, Chen CC (2002) Polyacrylonitrile electrolytes: 1. A novel high-conductivity composite polymer electrolyte based on PAN, LiClO4 and α-Al2O3. Solid State Ionics 150:327–335

    Article  CAS  Google Scholar 

  72. Woo HJ, Liew CW, Majid SR, Arof AK (2014) Poly(ε-caprolactone)-based polymer electrolyte for electrical double-layer capacitors. High Perform Polym 26:637–640

    Article  CAS  Google Scholar 

  73. Kadir MFZ, Majid SR, Arof AK (2010) Plasticized chitosan–PVA blend polymer electrolyte based proton battery. Electrochim Acta 55:1475–1482

    Article  CAS  Google Scholar 

  74. Tambelli CC, Bloise AC, Rosário AV, Pereira EC, Magon CJ, Donoso JP (2002) Characterisation of PEO–Al2O3 composite polymer electrolytes. Electrochim Acta 47:1677–1682

    Article  CAS  Google Scholar 

  75. Fauteux D, Massucco A, McLin M, van Buren M, Shi J (1995) Lithium polymer electrolyte rechargeable battery. Electrochim Acta 40:2185–2190

    Article  CAS  Google Scholar 

  76. Ramesh S, LiewCW(2013) Dielectric and FTIR studies on blending of [x PMMA-(1-x)PVC] with LiTFSI.Measurement 46:1650–1656

  77. Croce F, Persi L, Scrosati B, Serraino-Fiory F, Plichta E, Hendrickson MA (2001) Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim Acta 46:2457–2461

    Article  CAS  Google Scholar 

  78. Weston JE, Steele BCH (1983) Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes. Solid State Ionics 7:75–79

    Article  Google Scholar 

  79. Gopalan AI, Santhosh P, Manesh KM, Nho JH, Kim SH, Hwang CG, Lee KP (2008) Development of electrospun PVdF–PAN membrane-based polymer electrolytes for lithium batteries. J Membr Sci 325:683–690

    Article  CAS  Google Scholar 

  80. Jiang Z, Carroll B, Abraham KM (1997) Studies of some poly(vinylidene fluoride) electrolytes. Electrochim Acta 42:2667–2677

    Article  CAS  Google Scholar 

  81. Abbrent S, Pletstil J, Hlavata D, Lindgren J, Tegenfeldt J, Wendsjo A (2001) Crystallinity and morphology of PVdF–HFP-based gel electrolytes. Polymer 42:1407–1416

    Article  CAS  Google Scholar 

  82. Tsuchida E, Ohno H, Tsunemi K (1983) Conductivity of lithium ions in PVdF and its derivatives—I. Electrochim Acta 28:591–595

    Article  CAS  Google Scholar 

  83. Tsunemi K, Ohno H, Tsuchida E (1983)A mechanism of ionic conduction of PVdF-lithium perchlorate hybrid films. Electrochim Acta 28:833–837

  84. Choe HS, Giaccai J, Alamgir M, Abraham KM (1995) Preparation and characterization of poly(vinyl sulfone) and poly(vinylidene fluoride)-based electrolytes. Electrochim Acta 40:2289–2293

    Article  CAS  Google Scholar 

  85. Kim KM, Ryu KS, Kang SG, Chang SH, Chung JJ (2001) The effect of silica addition on the properties of poly((vinylidene fluoride)-co-hexafluoropropylene)-based polymer electrolytes. Macromol Chem Phys 202:866–872

    Article  CAS  Google Scholar 

  86. Capiglia C, Saito Y, Kataoka H, Kodama T, Quartarone E, Mustarelli P (2001) Structure and transport of polymer gel electrolytes based on PVdF-HFP and LiN(C2F5SO2)2. Solid State Ionics 131:291–299

  87. Saika D, Kumar A (2004) Ionic conduction in (PVdFHFP)PC + DEC-LiClO4 polymer gel electrolytes. Electrochim Acta 49:2581–2589

    Article  CAS  Google Scholar 

  88. Iijima T, Toyoguchi Y, Eda N (1985) Solid organic electrolytes gelatinized with PMMA and their applications for lithium batteries. Denki Kagaku 53:619–621

    CAS  Google Scholar 

  89. Appetecchi GB, Croce F, Scrosati B (1995) Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes. Electrochim Acta 40:991–997

    Article  CAS  Google Scholar 

  90. Bohnke O, Rousselot C, Gillet PA, Truche C (1992) Gel electrolytes for solid-state electrochromic cells. J Electrochem Soc 139:1862–1865

    Article  CAS  Google Scholar 

  91. Vondrak J, Sedlarikova M, Velicka J, Klapste B, Novak V, Reiter J (2001) Gel polymer electrolytes based on PMMA. Electrochim Acta 46:2047–2048

    Article  CAS  Google Scholar 

  92. Rhoo HJ, Kim HT, Park JK, Hwang TS (1997) Ionic conduction in plasticized PVC/ PMMA blend polymer electrolytes. Electrochim Acta 42:1571–1579

    Article  CAS  Google Scholar 

  93. Alamgir M, Abraham K (1993) Li ion conductive electrolytes based on poly(vinyl chloride). J Electrochem Soc 140:L96–L97

    Article  CAS  Google Scholar 

  94. Sukeshini M, Nishimoto A, Watanabe M (1996) Transport and electrochemical characterization of plasticized poly(vinyl chloride) solid electrolytes. Solid State Ionics 86–88:385–393

    Article  Google Scholar 

  95. Dasenbrock CO, Ridgway TH, Seliskar CJ, Heineman RW (1998) Evaluation of the electrochemical characteristics of a poly(vinyl alcohol)/poly(acrylic acid) polymer blend. Electrochim Acta 43:3497–3502

    Article  CAS  Google Scholar 

  96. Yang JM, Wang ZW, Yang CC (2008) Modification and characterization of semiecrystalline poly(vinyl alcohol) with interpenetrating poly(acrylic acid) by UV radiation method for alkaline solid polymer electrolytes membrane. J Membr Sci 322:74–80

    Article  CAS  Google Scholar 

  97. Yang CC, Wu GM (2009) Study of microporous PVA/PVC composite polymer membrane and it application to MnO2 capacitors. Mater Chem Phys 114:948–955

    Article  CAS  Google Scholar 

  98. Lu Y, Wang D, Li T, Zhao X, Cao Y, Yang H, Duan YY (2009) Poly(vinyl alcohol)/poly(acrylic acid) hydrogel coatings for improving electrode-neural tissue interface. Biomaterials 30:4143–4151

    Article  CAS  Google Scholar 

  99. Qiao J, Okada T, Ono H (2009) High molecular weight PVAe modified PVA/PAMPS protone conducting membranes with increased stability and their application in DMFCs. Solid State Ionics 180:1318–1323

    Article  CAS  Google Scholar 

  100. Hirankumar G, Selvasekarapandian S, Kuwata N, Kawamura J, Hattori T (2005) Thermal, electrical and optical studies on the poly(vinylalcohol) based polymer electrolytes. J Power Sources 144:262–267

    Article  CAS  Google Scholar 

  101. Yang CC (2004) Chemical composition and XRD analyses for alkaline composite PVA polymer electrolyte. Mater Lett 58:33–38

    Article  CAS  Google Scholar 

  102. Tsutsumi H, Matsuo A, Takase K, Doi S, Hisanaga A, Onimura K, Oishi T (2010) Conductivity enhancement of polyacrylonitrile-based electrolytes by addition of cascade nitrile compounds. J Power Sources 90:33–38

    Article  Google Scholar 

  103. Tatsuma T, Taguchi M, Iwaku M, Sotomura T, Oyama N (1999) Inhibition effects of polyacrylonitrile gel electrolytes on lithium dendrite formation. J Electroanal Chem 472:142–146

    Article  CAS  Google Scholar 

  104. Abraham KM, Alamgir M (1990) Li +-conductive solid polymer electrolyte with liquid-like conductivity. J Electrochem Soc 137:1657–1658

    Article  CAS  Google Scholar 

  105. Huq R, Koksbang R, Tonder PE, Farrington GC (1992) Effect of plasticizers on the properties of new ambient temperature polymer electrolyte. Electrochim Acta 37:1681–1684

    Article  CAS  Google Scholar 

  106. Watanabe M, Kanba M, Nagaoka K, Shinohara I (1982) Ionic conductivity of hybrid films based on polyacrylonitrile and their battery application. J Appl Polym Sci 27:4191–4198

    Article  CAS  Google Scholar 

  107. Watanabe M, Kanba M, Nagaoka K, Shinohara I (1983) Ionic conductivity of hybrid films composed of polyacrylonitrile, ethylene carbonate and LiClO4. J Polym Sci B Polym Phys 21:939–948

    Article  CAS  Google Scholar 

  108. Croce F, Gerace F, Dautzenberg G, Passerini S, Appectecchi GB, Scrosati B (1994) Synthesis and characterization of highly conducting gel electrolytes. Electrochim Acta 39:2187–2194

    Article  CAS  Google Scholar 

  109. Appettecchi GB, Croce F, Ramagnoli P, Scrosati B, Heider U, Osten R (1999) High performance of gel-type lithium electrolyte membranes. Electrochem Commun 1:83–86

    Article  Google Scholar 

  110. Akashi H, Sekai K, Tanaka K (1998) A novel fire-retardant poly(acrylonitrile) based lithium batteries. Electrochim Acta 43:1193–1197

    Article  CAS  Google Scholar 

  111. Amass W, Amass A, Tighe B (1998) A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym Int 47:89–144

    Article  CAS  Google Scholar 

  112. Coombes AGA, Rizzi SC, Williamson M, Barralet JE, Downes S, Wallace WA (2004) Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery. Biomaterials 25:315–325

    Article  CAS  Google Scholar 

  113. Muzzarelli RAA (1977) Chitin. Pergamon Press, Oxford

    Google Scholar 

  114. Neto CG, Dantas TN, Fonseca JL, Pereira MR (2005) Permeability studies in chitosan membranes. Effects of crosslinking and poly(ethylene oxide) addition. Carbohydr Res 340:2630–2636

    Article  CAS  Google Scholar 

  115. Donoso JP, Lopes LVS, Pawlicka A, Fuentes S, Retnert PJ, Gonzalez G (2007) Nuclear magnetic resonance study of chitosan-based polymer electrolytes. Electrochim Acta 53:1455–1460

    Article  CAS  Google Scholar 

  116. Singh PK, Bhattacharya B, Nagaraled RK, Kim KW, Rhee HW (2010) Synthesis, characterization and application of biopolymer-ionic liquid composite membranes. Synth Met 160:139–142

    Article  CAS  Google Scholar 

  117. Aiba S, Izume M, Minoura N, Fujiwara Y (1986) Chitosan based membranes for separation process. In: Muzzarelli RAA, Jeuniaux C, Gooday GM (eds) Chitin in nature and technology. Plenum Press, New York, pp. 396–398

    Google Scholar 

  118. Ghaouth AE, Arul J, Ponnampalam R, Boulet M (1991) Chitosan coating effect on storability and quality of fresh strawberries. J Food Sci 56:1618–1620

    Article  Google Scholar 

  119. Smitha B, Sridhar S, Khan AA (2004) Polyelectrolyte complexes of chitosan and poly(acrylic acid) as proton exchange membranes for fuel cells. Macromolecules 37:2233–2239

    Article  CAS  Google Scholar 

  120. Yusuf SNF, Aziz MF, Hassam HC, Bandara TMWJ, Mellander BE, Careem MA, Arof AK (2014) Phthaloylchitosan-based gel polymer electrolytes for efficient dye-sensitized solar cells. J Chem 783023

  121. Fadzallah IA, Majid SR, Careem MA, Arof AK (2014) Relaxation process in chitosan-oxalic acid solid polymer electrolytes. Ionics 20:969–975

    Article  CAS  Google Scholar 

  122. Rajendran S, Kannan R, Mahendran O (2001) An electrochemical investigation on PMMA/PVdF blend-based polymer electrolytes. Mater Lett 49:172–179

    Article  CAS  Google Scholar 

  123. Wen Z, Itoh T, Ichikawa Y, Kubo M, Yamamoto O (2000) Blend-based polymer electrolytes of poly(ethylene oxide) and hyperbranched poly[bis(triethylene glycol)benzoate] with terminal acetyl groups. Solid State Ionics 134:281–289

    Article  CAS  Google Scholar 

  124. Ahmad Z, Al-Awadi NA, Al-Sagheer F (2007) Morphology, thermal stability and visco-elastic properties of polystyrene–poly(vinyl chloride) blends. Polym Degrad Stab 92:1025–1033

    Article  CAS  Google Scholar 

  125. Shukur MF, Ithnin R, Illias HA, Kadir MFZ (2013) Proton conducting polymer electrolyte based on plasticized chitosan–PEO blend and application in electrochemical devices. Opt Mater 35:1834–1841

    Article  CAS  Google Scholar 

  126. Raghavan P, Zhao X, Manuel J, Chauhan GS, Ahn JH, Ryub HS, Ahn HJ, Kim KW, Nah C (2010) Electrochemical performance of electrospun poly(vinylidene fluoride-co-hexafluoropropylene)-based nanocomposite polymer electrolytes incorporating ceramic fillers and room temperature ionic liquid. Electrochim Acta 55:1347–1354

    Article  CAS  Google Scholar 

  127. Gozdz AS, Tarascon JM, Schmutz CN, Warren PC, Gebizlioglu OS, Shokoohi, F (1994) Ext. Abstr.-ECS fall meeting. Miami, Ž.Ž. Florida, p 117

  128. Aihara Y, Kodama M, Nakahara K, Okise H, Murata K (1997) Characteristics of a thin film lithium-ion battery using plasticized solid polymer electrolyte. J Power Sources 65:143–147

    Article  CAS  Google Scholar 

  129. Lee K–H, Lee Y–G, Park J–K, Seung D–Y (2000) Effect of silica on the electrochemical characteristics of the plasticized polymer electrolytes based on the P(AN-co-MMA) copolymer. Solid State Ionics 133:257–263

    Article  CAS  Google Scholar 

  130. Vassal N, Salmon E, Fauvarque J–F. Electrochemical properties of an alkaline solid polymer electrolyte based on P(ECH-co-EO). Electrochim Acta 2000:45:1527–1532.

  131. Nishimoto A, Agehara K, Furuya N, Watanabe T, Watanabe M (1999) High ionic conductivity of polyether-based network polymer electrolytes with hyperbranched side chains. Macromolecules 32:1541–1548

    Article  CAS  Google Scholar 

  132. Matsui S, Muranaga H, Higibashi H, Inoue S, Sakai T (2001) Liquid free rechargeable Li-polymer battery. J Power Sources 97–98:772–774

    Article  Google Scholar 

  133. Kuratomi J, Iguchi T, Bando T, Aihara Y, Ono T, Kuwana K (2001) Development of solid polymer lithium secondary batteries. J Power Sources 97–98:801–803

    Article  Google Scholar 

  134. Matoba Y, Ikeda Y, Kohjiya S (2003) Ionic conductivity and mechanical properties of polymer networks prepared from high molecular weight branched poly(oxyethylene)s. Solid State Ionics 147:403–409

    Article  Google Scholar 

  135. Lee KH, Kim KH, Lim HS (2001) Studies on new series of crosslinked A1152. Polymer electrolytes for a lithium secondary battery. J Electrochem Soc 148:A1148–A1152

    Article  CAS  Google Scholar 

  136. Chung SH, Wang Y, Persi L, Croce F, Greenbaum SG, Scrosati B, Plichta E (2001) Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides. J Power Sources 97–98:644–648

    Article  Google Scholar 

  137. Croce F, Appetecchi GB, Persiand L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458

    Article  CAS  Google Scholar 

  138. Croce F , Scrosati B, Mariotto G. Electrochemical and spectroscopic study of the transport properties of composite polymer electrolytes. Chem Mater 1992;4:1134–1136.

    Article  CAS  Google Scholar 

  139. Scrosati B, Croce F, Persi L (2000) Impedance spectroscopy study of PEO-based nanocomposite polymer electrolytes. J Electrochem Soc 147:1718–1721

    Article  CAS  Google Scholar 

  140. Liquan C, Chowdari BV, Radhakrishna S (1988) Materials for solid-state batteries. World Scientific, Singapore, p. 69

    Google Scholar 

  141. Golodnitsky D, Ardel G, Peled E (2002) Ion-transport phenomena in concentrated PEO-based composite polymer electrolytes. Solid State Ionics 147:141–155

    Article  CAS  Google Scholar 

  142. Madhurjya MB, Thokchom J, Bhat SV (2010) Studies on a nanocomposite solid polymer electrolyte with hydrotalcite as a filler. Solid State Ionics 181:964–970

    Article  CAS  Google Scholar 

  143. Ahn JH, Wang GX, Liu HK, Dou SX (2003) Nanoparticle-dispersed PEO polymer electrolytes for Li batteries. J Power Sources 119–121:422–426

    Article  CAS  Google Scholar 

  144. Xiong HG, Tang SW, Tang HL, Zou P (2008) The structure and properties of a starch-based biodegradable film. Carbohydr Polym 71:263–268

    Article  CAS  Google Scholar 

  145. Ramesh S, Lu SC, Morris E (2012) Towards magnesium ion conducting poly (vinylidenefluoride-hexafluoropropylene)-based solid polymer electrolytes with great prospects: ionic conductivity and dielectric behaviours. J Taiwan Inst Chem Eng 43:806–812

    Article  CAS  Google Scholar 

  146. Liew CW, Ramesh S, Arof AK (2014) Good prospect of ionic liquid based-poly(vinyl alcohol) polymer electrolytes for supercapacitors with excellent electrical, electrochemical and thermal properties. Int J Hydrog Energy 39:2953–2963

    Article  CAS  Google Scholar 

  147. Liew CW, Ramesh S (2014) Comparing triflate and hexafluorophosphate anions of ionic liquids in polymer electrolytes for supercapacitor applications. Materials 7:4019–4033

    Article  CAS  Google Scholar 

  148. Li Q, Sun HY, Takeda Y, Imanishi N, Yang J, Yamamoto O (2001) Interface properties between a lithium metal electrode and a poly(ethylene oxide) based composite polymer electrolyte. J Power Sources 94:201–205

    Article  CAS  Google Scholar 

  149. Ramesh S, Liew CW (2013) Development and investigation on PMMA-PVC blend-based solid polymer electrolytes with LiTFSI as dopant salt. Polym Bull 70:1277–1288

    Article  CAS  Google Scholar 

  150. Ramesh S, Shanti R, Morris E (2013) Employment of [Amim] Cl in the effort to upgrade the properties of cellulose acetate based polymer electrolytes. Cellulose 20:1377–1389

    Article  CAS  Google Scholar 

  151. Ahmad S, Bohidar HB, Ahmad S, Agnihotry SA (2006) Role of fumed silica on ion conduction and rheology in nanocomposite polymeric electrolytes. Polymer 47:3583–3590

    Article  CAS  Google Scholar 

  152. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4417

    Article  CAS  Google Scholar 

  153. Ramesh S, Liew CW (2013) Tailor made of fumed silica based nano composite polymer electrolytes consisting of BmImTFSI ionic liquid. Iran Polym J 21:273–281

    Article  CAS  Google Scholar 

  154. Shamsipur M, Beigi AAM, Teymouri M, Pourmortazavi SM, Irandoust M (2010) Physical and electrochemical properties of ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. J Mol Liq 157:43–50

    Article  CAS  Google Scholar 

  155. Ramesh S, Lu SC (2012) Concentration effect of BMIMTf on P(VdF-HFP)/MgTf-based solid polymer electrolyte system. J Mater Res 27:1488–1496

    Article  CAS  Google Scholar 

  156. Sirisopanaporn C, Fernicola A, Scrosati B (2009) New ionic liquid based membranes for lithium battery application. J Power Sources 86:490–495

    Article  CAS  Google Scholar 

  157. Xu W, Angell CA (2003) Solvent-free electrolytes with aqueous solution-like conductivities. Science 302:422–425

    Article  CAS  Google Scholar 

  158. Luo J, Conrad O, Vankelecom IFJ (2012) Physicochemical properties of phosphonium-based and ammonium-based protic ionic liquids. J Mater Chem 22:20574–20579

    Article  CAS  Google Scholar 

  159. Luo J, Hu J, Saak W, Beckhaus R, Wittstock G, Vankelecom IFJ, Agert C, Conrad O (2011) Protic ionic liquid and ionic melts prepared from methanesulfonic acid and 1H-1,2,4-triazole as high temperature PEMFC electrolytes. J Mater Chem 21:10426–10436

    Article  CAS  Google Scholar 

  160. Luo J, Jensen AH, Brooks NR, Sniekers J, Knipper M, Aili D, Li Q, Vanrov B, Wübbenhorst M, Yan F, Meervelt LV, Shao Z, Fang J, Luo Z-H, Vos DED, Binnemans K, Fransaer J (2015) 1,2,4-triazolium perfluorobutanesulfonate as an archetypal pure protic organic ionic plastic crystal electrolyte for all-solid-state fuel cells. Energy Environ Sci 8:1276–1291

    Article  CAS  Google Scholar 

  161. Luo J, Tan TV, Conrad O, Vankelecom IFJ (2012) 1H-1,2,4-triazole as solvent for imidazolium methanesulfonate. Phys Chem Chem Phys 14:11441–11447

    Article  CAS  Google Scholar 

  162. Brazier A, Appetecchi GB, Passerini S, Vuk AS, Orel R, Donsanti F, Decker F (2007) Ionic liquids in electrochromic devices. Electrochim Acta 52:4792–4797

    Article  CAS  Google Scholar 

  163. Cheng H, Zhu C, Huang B, Lu M, Yang Y (2007) Synthesis and electrochemical characterization of PEO-based polymer electrolytes with room temperature ionic liquids. Electrochim Acta 52:5789–5794

    Article  CAS  Google Scholar 

  164. Jain N, Kumar A, Chauhan S, Chauhan SMS (2005) Chemical and biochemical transformations in ionic liquids. Tetrahedron 61:1015–1060

    Article  CAS  Google Scholar 

  165. Lu J, Yan F, Texter J (2009) Advanced applications of ionic liquids in polymer science. Prog Polym Sci 34:431–448

    Article  CAS  Google Scholar 

  166. Marcilla R, Alcaide F, Sardon H, Pomposo JA, Gonzalo CP, Mecerreyes D (2006) Tailor-made polymer electrolytes based upon ionic liquids and their application in all-plastic electrochromic devices. Electrochem Commun 8:482–488

    Article  CAS  Google Scholar 

  167. Ramesh S, Liew CW (2012) Rheological characterizations of ionic liquid-based gel polymer electrolytes and fumed silica-based composite polymer electrolytes. Ceram Int 38:3411–3417

    Article  CAS  Google Scholar 

  168. Reiter J, Vondrak J, Michalek J, Micka Z (2006) Ternary polymer electrolytes with 1-methylimidazole based ionic liquids and aprotic solvents. Electrochim Acta 52:1398–1408

    Article  CAS  Google Scholar 

  169. Sekhon SS, Krishnan P, Singh B, Yamada K, Kim CS (2006) Proton conducting membrane containing room temperature ionic liquid. Electrochim Acta 52:1639–1644

    Article  CAS  Google Scholar 

  170. Vioux A, Viau L, Volland S, Bideau JL (2009) Use of ionic liquids in sol-gel; ionogels and applications. C R Chim 13:242–255

    Article  CAS  Google Scholar 

  171. Yu B, Zhou F, Wang C, Liu W (2007) A novel gel polymer electrolyte based on poly ionic liquid 1-ethyl 3-(2-methacryloyloxy ethyl) imidazolium iodide. Eur Polym J 43:2699–2707

    Article  CAS  Google Scholar 

  172. Chagnes A, Allouchi H, Carré B, Lemordant D (2005) Thermal analysis of γ-butyrolactone +1 butyl-3-methyl-imidazolium ionic liquids mixtures. Solid State Ionics 176:1419–1427

    Article  CAS  Google Scholar 

  173. Aravindan V, Vickraman P, Krishnaraj K (2009) Li+ ion conduction in TiO2 filled polyvinlidenefluoride-co-hexafluoropropylene based novel nanocomposite polymer electrolyte membranes with LiDFOB. Curr Appl Phys 9:1474–1479

    Article  Google Scholar 

  174. Kubisa P (2004) Application of ionic liquids as solvents for polymerization processes. Prog Polym Sci 29:3–12

    Article  CAS  Google Scholar 

  175. Cheng H, Wang P, Luo J, Fransaer J, Vos DED, Luo Z-H (2015) Poly(ionic liquid)-based nanocomposites and their performance in CO2 capture. Ind Eng Chem Res 54:3107–3115

    Article  CAS  Google Scholar 

  176. Wang P, Zhou Y-N, Luo J-S, Luo Z-H (2014) Poly(ionic liquid)s-based nanocomposite polyelectrolytes with tunable ionic conductivity prepared via SI-ATRP. Polym Chem 5:882–891

    Article  CAS  Google Scholar 

  177. Japan Atomic Energy Agency (2010) High performance extraction separation systems using ionic liquids. Application to extraction of metal ions and proteins, JAEA R&D Review, p 85

  178. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269

    Article  CAS  Google Scholar 

  179. Shukla AK, Sampath S, Vijayamohanan K (2000) Electrochemical supercapacitors: energy storage beyond batteries. Curr Sci 79:1656–1661

    CAS  Google Scholar 

  180. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  181. Hashmi SA (2004) Supercapacitor: an emerging power source. Natl Acad Sci Lett 27:27–46

    Google Scholar 

  182. Pandey GP, Kumar Y, Hashmi SA (2010) Ionic liquid incorporated polymer electrolytes for supercapacitor application. Indian J Chem 49:743–751

    Google Scholar 

  183. Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91:37–50

    Article  CAS  Google Scholar 

  184. Kotz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498

    Article  CAS  Google Scholar 

  185. Tripathi SK, Kumar A, Hashmi SA (2006) Electrochemical redox supercapacitors using PVdF-HFP based gel electrolytes and polypyrrole as conducting polymer electrode. Solid State Ionics 177:2979–2985

    Article  CAS  Google Scholar 

  186. Duong TQ (2003) Annual progress report for energy storage research and development

  187. Matsuda A, Honjo H, Hirata K, Tatsumisago M, Minami T (1999) Electric double-layer capacitor using composites composed of phosphoric acid doped silica gel and styrene-ethylene-butylene-styrene elastomer as a solid electrolyte. J Power Sources 77:12–16

    Article  CAS  Google Scholar 

  188. Tanahashi I (2002) Comparison of the characteristics of electric double-layer capacitors with an activated carbon powder and an activated carbon fiber. J Appl Electrochem 35:1067–1072

    Article  CAS  Google Scholar 

  189. Nohara S, Wada H, Furukawa N, Inoue H, Morita M, Iwakura C (2003) Electrochemical characterization of new electric double layer capacitor with polymer hydrogel electrolyte. Electrochim Acta 48:749–753

    Article  CAS  Google Scholar 

  190. Yang CC, Hsu ST, Chien WC (2005) All solid-state electric double-layer capacitors based on alkaline polyvinyl alcohol polymer electrolytes. J Power Sources 152:303–310

    Article  CAS  Google Scholar 

  191. Yamazaki S, Takegawa KA, Kadokawa JI, Yamagata M, Ishikawa M (2009) An acidic cellulose–chitin hybrid gel as novel electrolyte for an electric double layer capacitor. Electrochem Commun 11:68–70

    Article  CAS  Google Scholar 

  192. Frackowiak E, Béguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950

    Article  CAS  Google Scholar 

  193. Tanahashi I, Yoshida A, Nishino A (1990) Comparison of the electrochemical properties of electric double-layer capacitors with an aqueous electrolyte and with a nonaqueous electrolyte. Bull Chem Soc Jpn 63:3611–3614

    Article  CAS  Google Scholar 

  194. Gu HB, Kim JU, Song HW, Park GC, Park BK (2000) Electrochemical properties of carbon composite electrode with polymer electrolyte for electric double-layer capacitor. Electrochim Acta 45:1533–1536

    Article  CAS  Google Scholar 

  195. Matsuda Y, Morita M, Ishikawa M, Ihara M (1993) New electric double-layer capacitors using polymer solid electrolytes containing tetraalkylammonium salts. J Electrochem Soc 140:109–110

    Article  Google Scholar 

  196. Tien CP, Liang WJ, Kuo PL, Teng HS (2008) Electric double layer capacitors with gelled polymer electrolytes based on poly(ethylene oxide) cured with poly(propylene oxide) diamenes. Electrochim Acta 53:4505–4511

    Article  CAS  Google Scholar 

  197. Lewandowski A, Zajder M, Frackowiak E, Béguin F (2001) Supercapacitor based on activated carbon and polyethylene oxide–KOH–H2O polymer electrolyte. Electrochim Acta 46:2777–2780

    Article  CAS  Google Scholar 

  198. Osaka T, Liu X, Nojima M, Momma T (1999) An electrochemical double layer capacitor using an activated carbon electrode with gel electrolyte binder. J Electrochem Soc 146:1724–1729

    Article  CAS  Google Scholar 

  199. Yang CM, Ju JB, Lee JK, Cho WI, Cho BW (2005) Electrochemical performances of electric double layer capacitor with UV-cured gel polymer electrolyte based on poly[(ethylene glycol)diacrylate]–poly(vinylidene fluoride) blend. Electrochim Acta 50:1813–1819

    Article  CAS  Google Scholar 

  200. Choudhury NA, Sampath S, Shukla AK (2009) Hydrogel-polymer electrolytes for electrochemical capacitors: an overview. Energy Environ Sci 2:55–67

    Article  CAS  Google Scholar 

  201. Hashmi SA, Upadhyaya HM (2002) Polypyrrole and poly(3-methyl thiophene)-based solid state redox supercapacitors using ion conducting polymer electrolyte. Solid State Ionics 152–153:883–889

    Article  Google Scholar 

  202. Mitra S, Shukla AK, Sampath S (2001) Electrochemical capacitors with plasticized gel-polymer electrolytes. J Power Sources 101:213–218

    Article  CAS  Google Scholar 

  203. Ryu KS, Kim KM, Park NG, Park YJ, Chang SH (2003) Symmetric redox supercapacitor with conducting polyaniline electrodes. J Power Sources 103:305–309

    Article  Google Scholar 

  204. Yu H, Wu J, Fan L, Lin Y, Xu K, Tang Z, Cheng C, Tang S, Lin J, Huang M, Lan Z (2013) A novel redox-mediated gel polymer electrolyte for high-performance supercapacitor. J Power Sources 198:402–407

    Article  CAS  Google Scholar 

  205. Noto VD, Vittadello M, Lavina S, Fauri M, Biscazzo S (2001) Mechanism of ionic conductivity in poly(ethyleneglycol 400)/(LiCl)x electrolytic complexes: studies based on electrical spectroscopy. J Phys Chem 105:4584–4595

    Article  CAS  Google Scholar 

  206. Dias FB, Plomp L, Veldhuis JBJ (2000) Trends in polymer electrolytes for secondary lithium batteries. J Power Sources 88:169–191

    Article  CAS  Google Scholar 

  207. Aurbach D, Markovsky B, Salitra G, Markevich E, Talyossef Y, Koltypin M, Nazar L, Ellis B, Kovacheva D (2007) Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries. J Power Sources 165:491–499

    Article  CAS  Google Scholar 

  208. Croce F, Persi L, Ronci F, Scrosati B (2000) Nanocomposite polymer electrolytes and their impact on the lithium battery technology. Solid State Ionics 135:47–52

    Article  CAS  Google Scholar 

  209. Mohtadi R, Matsui M, Arthur TS, Hwang S-J (2012) Magnesium borohydride: from hydrogen storage to magnesium battery. Angew Chem 51:9780–9783

    Article  CAS  Google Scholar 

  210. Saha P, Datta MK, Velikokhatnyi OI, Manivannan A, Alman D, Kumta PN (2014) Rechargeable magnesium battery: current status and key challenges for the future. Prog Mater Sci 66:1–86

    Article  CAS  Google Scholar 

  211. Sun Q, Ren Q-Q, Li H, Fu Z-W (2011) High capacity Sb2O4 thinfilm electrodes for rechargeable sodium battery. Electrochem Commun 13:1462–1464

    Article  CAS  Google Scholar 

  212. Steele BCH, Heinzel A (2001) Review article materials for fuel-cell technologies. Nature 414:345–352

    Article  CAS  Google Scholar 

  213. Springer TE, Zawodzinski TA, Gottesfeld S (1991) Polymer electrolyte fuel cell model. J Electrochem Soc 138:2334–2342

    Article  CAS  Google Scholar 

  214. Liu H, Ramnarayanan R, Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38:2281–2285

    Article  CAS  Google Scholar 

  215. Lu L, Li R, Fan K, Peng T (2010) Effects of annealing conditions on the photoelectron-chemical properties of dye-sensitized solar cells made with ZnO nanoparticles. Sol Energy 84:844–853

    Article  CAS  Google Scholar 

  216. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663

    Article  CAS  Google Scholar 

  217. Ito S, Chen, P. Comte, P, Nazeeruddin, MK, Liska, P, Péchy, P, Grätzel, M (2007) Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. 15:603–612

  218. Griffith MJ, Sunahara K, Wagner P, Wagner K, Wallace GG, Officer DL, Furube A, Katoh R, Mori S, Mozer AJ (2012) Porphyrins for dye-sensitised solar cells: new insights into efficiency-determining electron transfer steps. Chem Commun 48:4145–4162

    Article  CAS  Google Scholar 

  219. Bay L, West K, Winther-Jensen B, Jocobsen T (2006) Electrochemical reaction rates in a dye-sensitised solar cell—the iodide/tri-iodide redox system. Sol Energy Mater Sol Cells 90:341–351

    Article  CAS  Google Scholar 

  220. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M (2014) Dye-sensitized solar cells with 13 % efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242–247

    Article  CAS  Google Scholar 

  221. Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C: Photochem Rev 4:145–153

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Grant Scheme (FP012-2015A) from the Ministry of Education, Malaysia, Universiti Malaya Research Grant IPPP (project account number PG120-2015B) and Grand Challenge Grant (GC002A15SBS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ramesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngai, K.S., Ramesh, S., Ramesh, K. et al. A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22, 1259–1279 (2016). https://doi.org/10.1007/s11581-016-1756-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1756-4

Keywords

Navigation