Skip to main content
Log in

Synthesis and impedance analysis of proton-conducting polymer electrolyte PVA:NH4F

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

An attempt has been made to prepare a new proton-conducting polymer electrolyte based on poly(vinyl alcohol) doped with ammonium fluoride (NH4F) by solution casting technique. The complex formation between polymer and dissociated salt has been confirmed by X-ray diffraction and Fourier transform infrared spectroscopy studies. The highest ionic conductivity has been found to be 6.9 × 10−6 Scm−1 at ambient temperature (303 K) for 85PVA:15NH4F polymer electrolyte. The conductance spectra contain a low frequency plateau region and high frequency dispersion region. The dielectric spectra exhibit the low frequency dispersion, which is due to space charge accumulation at the electrode–electrolyte interface. The modulus spectra indicate non-Debye nature of the material. The highest ionic conductivity polymer electrolyte 85PVA:15NH4F has low activation energy 0.2 eV among the prepared polymer electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. MacCallum JR, Vincent CA (eds) (1987 and 1989) Polymer electrolyte reviews 1 and 2. Elsevier, London

  2. Scrosati B (ed) (1993) Applications of electroactive polymers. Chapman & Hall, London

    Google Scholar 

  3. Hirankumar G, Selvasekarpandian S, Kuwata N, Kawamura J, Hattori T (2005) J Power Sources 144:262

    Article  CAS  Google Scholar 

  4. Krumova M, Lopaz D, Benavente R, Mijangos C, Perena JM (2000) Polymer 41:9265

    Article  CAS  Google Scholar 

  5. Masuda K, Kaji H, Hori F (2000) J Polym Sci Part B, Polym Phys 38:1

    Article  CAS  Google Scholar 

  6. Chandra S, Hashmi SA, Prasad G (1990) Solid State Ionics 40–41:651

    Article  Google Scholar 

  7. Kumar M, Sekhon SS (2002) Eur Polym J 38:1297

    Article  CAS  Google Scholar 

  8. Sekhon S, Kumar M, Yamada K, Okuda T (2003) Chem Phys Lett 379:466

    Article  CAS  Google Scholar 

  9. Manoj K, Sekhon SS (2002) Ionics 8:223

    Article  Google Scholar 

  10. Nik Aziz NA, Idris NK, Isa MIN (2010) Int J Phys Sci 5(6):748

    CAS  Google Scholar 

  11. Hema M, Selvasekarpandian S, Arunkumar D, Sakunthala A, Nithya H (2009) J Non-Cryst Solids 355:84

    Article  CAS  Google Scholar 

  12. Hema M, Selvasekarpandian S, Hirankumar G, Sakunthala A, Arunkumar D, Nithya H (2009) J Phys Chem Solids 70:1098

    Article  CAS  Google Scholar 

  13. Hema M, Selvasekarpandian S, Sakunthala A, Arunkumar D, Nithya H (2008) Physica B 403:2740

    Article  CAS  Google Scholar 

  14. Sridevi D, Rajendran KV (2009) Bull Mater Sci 32(2):165

    Article  CAS  Google Scholar 

  15. Hodge RM, Edward GH, Simon GP (1996) Polymer 37:1371

    Article  CAS  Google Scholar 

  16. Rajendran S, Ravi Shanker B, Sivakumar P (2007) J Power Sources 170:460

    Article  CAS  Google Scholar 

  17. Coates J (2000) In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, pp 10815–10837

  18. Awadhia A, Agrawal SL (2007) Solid State Ionics 178:951

    Article  CAS  Google Scholar 

  19. Rajendran S, Sivakumar M, Subadevi R (2003) J Power Sources 124:225

    Article  CAS  Google Scholar 

  20. Abdelrazek EM, Elashmawi IS, Labeeb S (2010) Physica B 405:2021–2027

    Article  CAS  Google Scholar 

  21. Hongting P (2006) Ping Huang. Mater Lett 60:1724

    Article  Google Scholar 

  22. Rajendran S, Sivakumar M, Subadevi R (2003) J Appl Polym Sci 90:2794

    Article  CAS  Google Scholar 

  23. Rajendran S, Sivakumar M, Subadevi R, Wu NL, Lee JY (2007) J Appl Polym Sci 103:3950

    Article  CAS  Google Scholar 

  24. Rajendran S, Sivakumar M, Subadevi R (2004) Matter Lett 58:641

    Article  CAS  Google Scholar 

  25. Rajendran S, Sivakumar M, Subadevi R (2004) Solid State Ionics 167:335

    Article  CAS  Google Scholar 

  26. Rajeswari N, Selvasekarpandian S, Karthikeyan S, Prabhu M, Hirankumar G, Nithya H, Sanjeeviraja C (2011) J Non-Cryst Solids 357:3751

    Article  CAS  Google Scholar 

  27. Boukamp BA (1986) Solid State Ionics 20:301

    Article  Google Scholar 

  28. Boukamp BA (1986) Solid State Ionics 18 and 19:136

    Article  Google Scholar 

  29. Irvine JTC, Sinclair DC, West AR (1990) Adv Mater 2:138

    Article  Google Scholar 

  30. Stephan AM, Thirunakaran R, Renganathan NG, Sundaram V, Pitchumani S, Muniyandi N, Gangadharan R, Ramamoorthy P (1999) J Power Sources 81–82:752

    Article  Google Scholar 

  31. Kim DW, Kim YR, Park JK, Moon SI (1998) Solid State Ionics 106:329

    Article  CAS  Google Scholar 

  32. Mohan VM, Weiliang Q, Jie S, Wen C (2010) J Polym Res 17:143

    Article  CAS  Google Scholar 

  33. Rajendran S, Shanthi Bama V, Ramesh Prabhu M (2010) Ionics 16:27

    Article  CAS  Google Scholar 

  34. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric, London, p 284

    Google Scholar 

  35. Ngai KL (1994) In: Richert R, Blumen A (eds) Effects on relaxational properties. Springer, Berlin, p 89

    Chapter  Google Scholar 

  36. Jonscher AK (1977) Nature 267:673

    Article  CAS  Google Scholar 

  37. Funke K, Roling B, Lange M (1998) Solid State Ionics 105:195

    Article  CAS  Google Scholar 

  38. Vijaykumar M, Hirankumar G, Bhuvaneswari MS, Selvasekarapandian S (2003) J Power Sources 117:143

    Article  Google Scholar 

  39. Pandey K, Dwivedi MM, Singh M, Agrawal SL (2010) J Polym Res 17:127

    Article  CAS  Google Scholar 

  40. Maturitz AK (1989) Macromolecules 22:4483

    Article  Google Scholar 

  41. Jaipal Reddy M, Sreekanth T, Subba Rao UV (1999) Solid State Ionics 126:55

    Article  Google Scholar 

  42. Kopitzke RW, Linkous CA, Anderson HR, Nelson GL (2000) J Electrochem Soc 147:1677

    Article  CAS  Google Scholar 

  43. Pillai PKC, Khurana P, Tripati A (1986) J Mater Sci Lett 5:629

    Article  CAS  Google Scholar 

  44. Armstrong RD, Dickinson T, Wills PM (1974) J Electroanal Chem 53(3):389

    Article  CAS  Google Scholar 

  45. Armstrong RD, Race WP (1976) J Electroanal Chem 74:125

    Article  Google Scholar 

  46. Hema M, Selvasekarapandian S, Nithya H, Sakunthala A, Arunkumar D (2009) Ionics 15:487

    Article  CAS  Google Scholar 

  47. Macedo PB, Moynihan C, Bose R (1972) Phys Chem Glasses 13:171

    CAS  Google Scholar 

  48. Richter H, Wagner H (1998) Solid State Ionics 105:167

    Article  Google Scholar 

  49. Ramesh S, Chai MF (2007) Mater Sci Eng B 139:240

    Article  CAS  Google Scholar 

  50. Williams G, Watts DC (1970) T Farad Soc 66:80

    Article  CAS  Google Scholar 

  51. Dieterich W, Maass P (2002) Chem Phys 284:439

    Article  CAS  Google Scholar 

  52. Bhuvaneswari MS, Selvasekarapandian SG, Hirankumar G, Baskaran R, Vijayakumar M (2005) Ionics 11:362

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Selvasekarapandian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radha, K.P., Selvasekarapandian, S., Karthikeyan, S. et al. Synthesis and impedance analysis of proton-conducting polymer electrolyte PVA:NH4F. Ionics 19, 1437–1447 (2013). https://doi.org/10.1007/s11581-013-0866-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-0866-5

Keywords

Navigation