Skip to main content
Log in

Development of proton conducting biopolymer membrane based on agar–agar for fuel cell

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A proton-conducting polymer electrolyte based on agar and ammonium nitrate (NH4NO3) has been prepared through solution casting technique. The prepared polymer electrolytes were characterized by impedance spectroscopy, X-ray diffraction, and Fourier transform infra-red spectroscopy. Impedance analysis shows that sample with 60 wt.% NH4NO3 has the highest ionic conductivity of 6.57 × 10−4 S cm−1 at room temperature. As a function of temperature, the ionic conductivity exhibits an Arrhenius behaviour increasing from 6.57 × 10−4 S cm−1 at room temperature to 1.09 × 10−3 S cm−1 at 70 °C. Transport parameters of the samples were calculated using Wagner’s polarization method and thus shows that the increase in conductivity is due to the increase in the number of mobile ions. Fuel cell has been constructed with the highest proton conductivity polymer 40agar/60NH4NO3 and the open circuit voltage is found to be 558 mV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Smitha B, Sridhar S, Khan A (2005) Solid polymer electrolyte membranes for fuel cell applications—a review. J Membr Sci 259:10–26

    Article  CAS  Google Scholar 

  2. Casciola M, Alberti G, Sganappa M, Narducci R (2006) On the decay of Nafion proton conductivity at high temperature and relative humidity. J Power Sources 162:141–145

    Article  CAS  Google Scholar 

  3. Lu D, Xiao C, Xu S (2009) Starch-based completely biodegradable polymer materials. Express Polym Lett 3:366–375

    Article  CAS  Google Scholar 

  4. Ponez L, Sentanin F, Majid S, Arof A, Pawlicka A (2012) Ion-conducting membranes based on gelatin and containing LiI/I2 for electrochromic devices. Mol Cryst Liq Cryst 554:239–251

    Article  CAS  Google Scholar 

  5. Aziz SB, Abidin Z, Arof A (2010) Effect of silver nanoparticles on the DC conductivity in chitosan–silver triflate polymer electrolyte. Phys B Condens Matter 405:4429–4433

    Article  CAS  Google Scholar 

  6. Nik Aziz N, Idris N, Isa M (2010) Solid polymer electrolytes based on methylcellulose: FT-IR and ionic conductivity studies. Int J Polym Anal Charact 15:319–327

    Article  CAS  Google Scholar 

  7. Araki C (1966) Some recent studies on the polysaccharides of agarophytes. Proc Fifth Int Seaweed Symp 5:3

    Google Scholar 

  8. Raphael E, Avellaneda CO, Manzolli B, Pawlicka A (2010) agar-based films for application as polymer electrolytes. Electrochim Acta 55:1455–1459

    Article  CAS  Google Scholar 

  9. Moon WG, Kim GP, Lee M, Song HD, Yi J (2015) A biodegradable gel polymer electrolyte for use in high-performance flexible supercapacitors. ACS Applied Materials Interfaces 7(6):3503–3511

    Article  CAS  Google Scholar 

  10. Koh JCH, Ahmad ZA, Mohamad AA (2012) Bacto agar-based polymer electrolyte. Ionics 18:359–364

    Article  CAS  Google Scholar 

  11. Singh R, Jadhav NA, Majumder S, Bhattacharya B, Singh PK (2013) Novel biopolymer gel electrolytes for dye-sensitized solar cell application. Carbohydr Polym 91(2):682–685

    Article  CAS  Google Scholar 

  12. Singh R, Singh PK, Tomar SK, Bhattacharya B (2016) Synthesis, characterization and dye-sensitized solar cell fabrication using solid polymer electrolyte membranes. High performance polymers 28(1):47–54

    Article  CAS  Google Scholar 

  13. Alias SS, Mohamad AA (2013) Effect of NH4I and I2 concentration on agar gel polymer electrolyte properties for a dye-sensitized solar cell. Ionics 19:1185–1194

    Article  CAS  Google Scholar 

  14. Boukamp BA (1986a) A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems. Solid State Ionics 20:31–44

    Article  CAS  Google Scholar 

  15. Boukamp BA (1986b) A package for impedance/admittance data analysis. Solid State Ionics 18:136–140

    Article  Google Scholar 

  16. Aji MP, Bijaksana S, Abdullah M (2012) A general formula for ion concentration-dependent electrical conductivities in polymer electrolytes. Am J Appl Sci 9:946

    Article  CAS  Google Scholar 

  17. Shukur M, Kadir M (2015) Electrical and transport properties of NH4Br-doped corn starch-based solid biopolymer electrolyte. Ionics 21:111–124

    Article  CAS  Google Scholar 

  18. Khiar AA, Arof A (2010) Conductivity studies of starch-based polymer electrolytes. Ionics 16:123–129

    Article  CAS  Google Scholar 

  19. Appetecchi G, Romagnoli P, Scrosati B (2001) Composite gel membranes: a new class of improved polymer electrolytes for lithium batteries. Electrochem Commun 3:281–284

    Article  CAS  Google Scholar 

  20. Appetecchi GB, Croce F, Romagnoli P, Scrosati B, Heider U, Oesten R (1999) High-performance gel-type lithium electrolyte membranes. Electrochem Commun 1:83–86

    Article  CAS  Google Scholar 

  21. Lan Z, Wu J, Lin J, Huang M, Li P, Li Q (2008) Influence of ionic additives NaI/I 2 on the properties of polymer gel electrolyte and performance of quasi-solid-state dye-sensitized solar cells. Electrochim Acta 53:2296–2301

    Article  CAS  Google Scholar 

  22. Chirapart A, Ohno M, Ukeda H, Sawamura M, Kusunose H (1995) Chemical composition of agars from a newly reported Japanese agarophyte, Gracilariopsis lemaneiformis. J Appl Phycol 7(4):359–365

    Article  CAS  Google Scholar 

  23. Armisen R, Galatas F (1987) Production, properties and uses of agar. Production and utilization of products from commercial seaweeds FAO Fish Tech Pap 288:1–57

    Google Scholar 

  24. Christiaen D, Bodard M (1983) Spectroscopie infrarouge de films d ‘agar de Gracilaria verrucosa (Huds.) Papenfuss. Bot Mar 26:425–428

    Article  CAS  Google Scholar 

  25. Rochas C, Lahaye M, Yaphe W (1986) Sulfate content of carrageenan and agar determined by infrared spectroscopy. Bot Mar 29:335–340

    Article  CAS  Google Scholar 

  26. El-Hefian EA, Nasef MM, Yahaya AH (2012) Preparation and characterization of chitosan/agar blended films: part 1. Chemical structure and morphology. Journal of Chemistry 9:1431–1439

    CAS  Google Scholar 

  27. Leones R, Sentanin F, Rodrigues L, Marrucho I, Esperança J, Pawlicka A, Silva M (2012) Investigation of polymer electrolytes based on agar and ionic liquids. Express Polym Lett 6:1007

    Article  CAS  Google Scholar 

  28. Ramesh S, Liew C-W, Arof A (2011) Ion conducting corn starch biopolymer electrolytes doped with ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J Non-Cryst Solids 357:3654–3660

    Article  CAS  Google Scholar 

  29. Ahmad N, Isa M (2016) Characterization of un-plasticized and propylene carbonate plasticized carboxymethyl cellulose doped ammonium chloride solid biopolymer electrolytes. Carbohydr Polym 137:426–432

    Article  CAS  Google Scholar 

  30. Sikkanthar S, Karthikeyan S, Selvasekarapandian S, Pandi DV, Nithya S, Sanjeeviraja C (2015) Electrical conductivity characterization of polyacrylonitrile-ammonium bromide polymer electrolyte system. J Solid State Electrochem 19:987–999

    Article  CAS  Google Scholar 

  31. Shamsudin I, Ahmad A, Hassan NH, Kaddami H (2016) Biopolymer electrolytes based on carboxymethyl К-carrageenan and imidazolium ionic liquid. Ionics:1–11

  32. Rajeswari N, Selvasekarapandian S, Sanjeeviraja C, Kawamura J, Bahadur SA (2014) A study on polymer blend electrolyte based on PVA/PVP with proton salt. Polym Bull 71:1061–1080

    Article  CAS  Google Scholar 

  33. Monisha S, Selvasekarapandian S, Mathavan T, Benial AMF, Manoharan S, Karthikeyan S (2016) Preparation and characterization of biopolymer electrolyte based on cellulose acetate for potential applications in energy storage devices. J Mater Sci Mater Electron 27(9):9314–9324

    Article  CAS  Google Scholar 

  34. Ramya C, Selvasekarapandian S, Savitha T, Hirankumar G, Baskaran R, Bhuvaneswari M, Angelo P (2006) Conductivity and thermal behavior of proton conducting polymer electrolyte based on poly (N-vinyl pyrrolidone). Eur Polym J 42:2672–2677

    Article  CAS  Google Scholar 

  35. Chai M, Isa M (2013) Electrical characterization and ionic transport properties of carboxyl methylcellulose-oleic acid solid polymer electrolytes. Int J Polym Anal Charact 18:280–286

    Article  CAS  Google Scholar 

  36. Nithya H, Selvasekarapandian S, Kumar DA, Sakunthala A, Hema M, Christopherselvin P, Kawamura J, Baskaran R, Sanjeeviraja C (2011) Thermal and dielectric studies of polymer electrolyte based on P (ECH-EO). Mater Chem Phys 126:404–408

    Article  CAS  Google Scholar 

  37. Kopitzke RW, Linkous CA, Anderson HR, Nelson GL (2000) Conductivity and water uptake of aromatic-based proton exchange membrane electrolytes. J Electrochem Soc 147:1677–1681

    Article  CAS  Google Scholar 

  38. Kim C, Lee G, Liou K, Ryu KS, Kang S-G, Chang SH (1999) Polymer electrolytes prepared by polymerizing mixtures of polymerizable PEO-oligomers, copolymer of PVDC and poly (acrylonitrile), and lithium triflate. Solid State Ionics 123:251–257

    Article  CAS  Google Scholar 

  39. Woo H, Majid S, Arof A (2012) Dielectric properties and morphology of polymer electrolyte based on poly (ɛ-caprolactone) and ammonium thiocyanate. Mater Chem Phys 134:755–761

    Article  CAS  Google Scholar 

  40. Dutta P, Biswas S, De SK (2002) Dielectric relaxation in polyaniline–polyvinyl alcohol composites. Mater Res Bull 37:193–200

    Article  CAS  Google Scholar 

  41. Sivadevi S, Selvasekarapandian S, Karthikeyan S, Sanjeeviraja C, Nithya H, Iwai Y, Kawamura J (2015) Proton-conducting polymer electrolyte based on PVA-PAN blend doped with ammonium thiocyanate. Ionics 21:1017–1029

    Article  CAS  Google Scholar 

  42. Ramesh S, Yahaya A, Arof A (2002) Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ionics 152:291–294

    Article  Google Scholar 

  43. Wagner JB, Wagner C (1957) Electrical conductivity measurements on cuprous halides. J Chem Phys 26:1597–1601

    Article  CAS  Google Scholar 

  44. Chandra S (1981) Superionic solids: principles and applications. North-Holland Publishing Co., Amsterdam. xi + 404, 22 × 15 cm, illustrated

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S . Selvasekarapandian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boopathi, G., Pugalendhi, S., Selvasekarapandian, S... et al. Development of proton conducting biopolymer membrane based on agar–agar for fuel cell. Ionics 23, 2781–2790 (2017). https://doi.org/10.1007/s11581-016-1876-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1876-x

Keywords

Navigation