Skip to main content
Log in

Electrical conductivity characterization of polyacrylonitrile-ammonium bromide polymer electrolyte system

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A new proton-conducting polymer electrolyte based on polyacrylonitrile (PAN) doped with ammonium bromide (NH4Br) has been prepared using solution casting technique. The complexation of NH4Br with PAN polymer has been studied using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The differential scanning calorimetry (DSC) thermograms of PAN with NH4Br electrolyte membrane show the decrease in glass transition temperature (T g). This reduction of T g of membrane reveals the increase of segmental motion of polymer electrolyte. The ionic conductivity of the prepared polymer electrolyte has been found by ac impedance spectroscopic analysis. The maximum ionic conductivity (2.5 × 10−3 S cm−1) has been obtained for 30 mol% NH4Br-doped PAN polymer electrolyte. The temperature-dependent conductivity of the polymer electrolyte follows an Arrhenius relationship. The dielectric spectra show low frequency dispersion. The relaxation time (τ) has been calculated from loss tangent spectra (tan δ). Ionic transference number measured has been found to be in the range of 0.92–0.99 for all the polymer electrolyte system. The result reveals that the conducting species are predominantly ions. Using the maximum ionic conducting polymer electrolyte, the primary proton-conducting battery with configuration Zn+ZnSo4·7H2O/70 PAN:30 NH4Br/PbO2 + V2O5 has been fabricated, and its discharge characteristics have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Qiao J, Hamaya T, Okada T (2005) Polymer 46:10809–10816

    Article  CAS  Google Scholar 

  2. Armand MB, Chabagno JM, Ducht MJ, Ducht MJ (1979) Fast ion transport in solids. Elsevier, North Holland, p 131 (edited by Vashista P, Mundy JN and Shenoy GK)

    Google Scholar 

  3. Fenton DE, Parker JM Wright PV (1973) polymer 14:589

  4. Archer WI, Amstrong RD (1980) Electrochim Acta 25:1689–1690

    Article  CAS  Google Scholar 

  5. Li ZH, Zhang HP, Zhang P, Li GC, Wu YP, Zhou XD (2008) J Membr Sci 322:416–422

    Article  CAS  Google Scholar 

  6. Pu W, He X, Wans L, Jiang C, Wan C (2006) J Membr Sci 272:11–14

    Article  CAS  Google Scholar 

  7. Kim DW, Oh B, Park JH, Sun YK (2000) Solid State Ionics 138:41–49

    Article  CAS  Google Scholar 

  8. Zhang SS, Ervin MH, Xu K, Jow TR (2004) Electrochim Acta 49:3339–3345

    Article  CAS  Google Scholar 

  9. Selvsekarapandian S, Hema M, Kawamura J, Kamishima O, Baskaran R (2010) J Phys Soc Jpn 79:163–168

    Article  Google Scholar 

  10. Majid SR, Arof AK (2005) J Phys Condens Matter 355(1):78–82

    CAS  Google Scholar 

  11. Kuldeep mishra, Devendra kumar rai (2013) Journal of the Korean physical society 62:311–319

  12. Baskaran R, Selvasekarapandian S, Kuwata, Kawamura NJ, Hattori T (2006) Solid State Ionics 177:2679–2682

    Article  CAS  Google Scholar 

  13. Hirankumar G, Selvasekarapandian S, Bhuvaneswari MB, Baskaran R, Vijayakumar M (2004) Ionics 10:135–138

    Article  CAS  Google Scholar 

  14. Shuhaimi NEA, Alias NA, Majid SR, Arof AK (2008) Funct Mater Lett 01(03):195–201

    Article  CAS  Google Scholar 

  15. Hema M, Selvasekarapandian S, Nithya H, Sakunthala A, Arunkumar D (2009) Ionics 15:487–491

    Article  CAS  Google Scholar 

  16. Ramya CS, Selvasekarapandian S (2008) SavithaT. J Solid State Electrochem 12:807–814

    Article  CAS  Google Scholar 

  17. Song JY, Wang YY, Wan CC (1999) J Power Sources 77:183–197

    Article  CAS  Google Scholar 

  18. El-Sabati AZ, Diab MA, Hilal AS, Moussa MN (1989) Acta Polym 40(4):236–237

    Article  Google Scholar 

  19. Wu CR, Liedberg B, Akbar S (1988) Syn Met 26(1):121–132

    Article  Google Scholar 

  20. Gupta AK, Singhal RP, Agarwal NK (1981) J Appl Polym Sci 23:3599–3608

    Article  Google Scholar 

  21. Ishikawa M, Ihara M, Morita M, Matsudu Y (1995) Electrochim Acta 13–14:2217–2222

    Article  Google Scholar 

  22. Mithra S, Shukla AK, Sampath S (2001) J Power Sources 101:213–218

    Article  Google Scholar 

  23. Perera KS, Dissanayake MAKL, Skaarup S, West K (2008) J Solid State Electrochem 12:873–877

    Article  CAS  Google Scholar 

  24. Nithya S, Selvasekarapandian S, Karthikeyan S, Inbavalli D, Sikkanthar S, Sanjeeviraja C (2014) Ionics 20 (2) (article in press)

  25. Ramya CS, Selvasekarapandian S, Hirankumar G, Savitha T, Angelo PC (2008) Non-Cryst Solids 354:1494–1502

    Article  CAS  Google Scholar 

  26. Sawai D, Miyamoto M, Kanamoto T, Ito MJ (2000) J Polym Sci Polym Phys 38:2571–2579

    Article  CAS  Google Scholar 

  27. Rajendran S, Sivakumar M, Subadevi R (2003) J Power Sources 124:225–230

    Article  CAS  Google Scholar 

  28. Hodge RM, Edward GH, Simon GP (1996) Polymer 37:1371–1376

    Article  CAS  Google Scholar 

  29. Kadir MFZ, Majid SR, Arof AK (2010) Electrochim Acta 55:1475–1482

    Article  CAS  Google Scholar 

  30. Stuff SI, Carr SH (1977) J Polym Sci Polym Phys Ed 15(3):485–499

    Article  Google Scholar 

  31. Coleman MM, Petcavich RJ (1978) J Polym Sci Polym Phys Ed 16:821–832

    Article  CAS  Google Scholar 

  32. Pottier A (1992) The hydrogen bond and chemical parameters favouring proton mobility in solid, in proton conductors: solid, membranes and gel materials and devices. Cambridge University Press, Cambridge, p 2

    Google Scholar 

  33. Norby T (1999) Solid State Ionics 125:1–11

    Article  CAS  Google Scholar 

  34. Reed JW, Williams Q (2006) Solid State Commun 140:202–207

    Article  CAS  Google Scholar 

  35. Dissanayake MAKL, Bandara LRAK, Bokalawala RSP, Jayathilaka PARD, Ileperuma OA, Somasundaram S (2002) Mater Res Bull 37:867–874

    Article  CAS  Google Scholar 

  36. Wieczoreck W, Stevens JR (1997) J Phys Chem B 101:1529–1534

    Article  Google Scholar 

  37. Jacob MME, Arof AK (2000) Electrochim Acta 45:1701–1706

    Article  CAS  Google Scholar 

  38. Hema M, Selvasekarapandian S, Arunkumar D, Sakunthala A, Nithya H (2009) Non-Cryst Solids 355:84–90

    Article  CAS  Google Scholar 

  39. Macdonald JR (1987) Impedance spectroscopy (ed). John Wiley & Sons, New York, pp p12–23

    Google Scholar 

  40. Izuchi S, Ochiai S, Takeuchi K (1987) J Power Sources 68:37–42

    Article  Google Scholar 

  41. Boukamp BA (1986) Solid State Ionics 20:31–44

    Article  CAS  Google Scholar 

  42. Boukamp BA (1986) Solid State. Ionics 18(19):136–140

    Article  Google Scholar 

  43. Li J, Su S, Zhou L, Abbot AM, Ye H (2014) Mater Res Express 1(035604):1–8

    Google Scholar 

  44. Ramanavicius A, Genys P, Ramanaviciene A (2014) Electrochim Acta 146:659–665

    Article  CAS  Google Scholar 

  45. Ramesh S, Arof AK (2001) Mater Sci Eng B 85:11–15

    Article  Google Scholar 

  46. Zhu W, Wang X, Yang B, Tang X (2001) J Polym Sci B Polym Phys 39:1246–1254

    Article  CAS  Google Scholar 

  47. Johnscher AK (1977) Nature 267:673–679

    Article  Google Scholar 

  48. Miyamoto T, Shibayama K (1973) J Appl Phycol 44:5372–5376

    Article  CAS  Google Scholar 

  49. Druger SD, Nitzam A, Ratner MA (1983) J Chem Phys 79:3133–3142

    Article  CAS  Google Scholar 

  50. Druger SD, Nitzam A, Ratner MA (1985) Phys Rev B 31:3939–3947

    Article  CAS  Google Scholar 

  51. Mac Callum JR, Vincent CA (1989) Polymer electrolyte reviews—II. Elsevier, London, pp 43–60

    Google Scholar 

  52. Dutta P, Biswas S (2002) Mater Res Bull 37:193–200

    Article  CAS  Google Scholar 

  53. Macdonald JR (1987) Impedance spectroscopy (ed). Wiley New York, USA, p 1

    Google Scholar 

  54. Amstrong RD, Dickinson T, Wills PM (1974) J Electroanal Chem 53(3):389–405

    Article  Google Scholar 

  55. Amstrong RD, Race WP (1976) J Electroanal Chem 74:125–143

    Article  Google Scholar 

  56. Adachi K, Urakawa O (2002) J Non-Cryst Solids 307–310:667–670

    Article  Google Scholar 

  57. Bozkurt A (2002) J Phys Chem Solids 63:685–690

    Article  CAS  Google Scholar 

  58. Singh KP, Gupta PN (1988) Eur Polym J 34(7):1023–1029

    Article  Google Scholar 

  59. Mishra R, Baskaran N, Ramakrihnan PA, Rao KJ (1998) Solid State Ionics 112:261–273

    Article  CAS  Google Scholar 

  60. Dieterich W, Maass P (2002) Chem Phys 284:439–467

    Article  CAS  Google Scholar 

  61. Nik Aziz NA, Idris NK, Isa MIN (2010) J Phys Sci 5(6):748–752

    CAS  Google Scholar 

  62. Wagner JB, Wagner C (1957) J Chem Phys 26:1597–1601

    Article  CAS  Google Scholar 

  63. Winnie T, Arof AK (2006) Ionics 12:149–152

    Article  Google Scholar 

  64. Agrawal RC, Hashmi SA, Pandey GP (2007) Ionics 13:295–298

    Article  CAS  Google Scholar 

  65. Subba Reddy CV, Sharma AK, Narasimha Rao VVR (2003) J Power Sources 114:338–345

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Selvasekarapandian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sikkanthar, S., Karthikeyan, S., Selvasekarapandian, S. et al. Electrical conductivity characterization of polyacrylonitrile-ammonium bromide polymer electrolyte system. J Solid State Electrochem 19, 987–999 (2015). https://doi.org/10.1007/s10008-014-2697-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2697-3

Keywords

Navigation