Skip to main content

Advertisement

Log in

Radiomics and machine learning analysis based on magnetic resonance imaging in the assessment of liver mucinous colorectal metastases

  • Diagnostic Imaging in Oncology
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to evaluate the Radiomics and Machine Learning Analysis based on MRI in the assessment of Liver Mucinous Colorectal Metastases.Query

Methods

The cohort of patients included a training set (121 cases) and an external validation set (30 cases) with colorectal liver metastases with pathological proof and MRI study enrolled in this approved study retrospectively. About 851 radiomics features were extracted as median values by means of the PyRadiomics tool on volume on interest segmented manually by two expert radiologists. Univariate analysis, linear regression modelling and pattern recognition methods were used as statistical and classification procedures.

Results

The best results at univariate analysis were reached by the wavelet_LLH_glcm_JointEntropy extracted by T2W SPACE sequence with accuracy of 92%. Linear regression model increased the performance obtained respect to the univariate analysis. The best results were obtained by a linear regression model of 15 significant features extracted by the T2W SPACE sequence with accuracy of 94%, a sensitivity of 92% and a specificity of 95%. The best classifier among the tested pattern recognition approaches was k-nearest neighbours (KNN); however, KNN achieved lower precision than the best linear regression model.

Conclusions

Radiomics metrics allow the mucinous subtype lesion characterization, in order to obtain a more personalized approach. We demonstrated that the best performance was obtained by T2-W extracted textural metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data presented in this study are available at link https://zenodo.org/record/6589924#.YpI6vGhBy3A.

References

  1. International Agency for Research on Cancer (IARC) (2020), GLOBOCAN 2020: colorectal cancer, Number of new cases in 2020, both sexes, all ages, vol 2020. https://gco.iarc.fr/today/data/factsheets/cancers/10_8_9-Colorectum-fact-sheet.pdf

  2. Gunter MJ, Alhomoud S, Arnold M, Brenner H, Burn J, Casey G et al (2019) Meeting report from the joint IARC–NCI international cancer seminar series: a focus on colorectal cancer. Ann Oncol. https://doi.org/10.1093/annonc/mdz044

    Article  PubMed  PubMed Central  Google Scholar 

  3. European Cancer Information System (ECIS) (2020) Incidence and mortality estimates. https://ecis.jrc.ec.europa.eu/explorer.php?0-01-AEE2-All4-1,23-All6-0,855-2008,20087-7CEstByCancerX0_8-3CEstRelativeCancX1_8-3X1_9-AE27CEstBySexByCancerX2_8-3X2_-1-1

  4. Fusco R, Granata V, Sansone M, Rega D, Delrio P, Tatangelo F, Romano C, Avallone A, Pupo D, Giordano M, Grassi R, Ravo V, Pecori B, Petrillo A (2021) Validation of the standardized index of shape tool to analyze DCE-MRI data in the assessment of neo-adjuvant therapy in locally advanced rectal cancer. Radiol Med. https://doi.org/10.1007/s11547-021-01369-1

    Article  PubMed  PubMed Central  Google Scholar 

  5. Granata V, Fusco R, deLutiodiCastelguidone E, Avallone A, Palaia R, Delrio P, Tatangelo F, Botti G, Grassi R, Izzo F, Petrillo A (2019) Diagnostic performance of gadoxetic acid-enhanced liver MRI versus multidetector CT in the assessment of colorectal liver metastases compared to hepatic resection. BMC Gastroenterol 19:129

    Article  Google Scholar 

  6. Rega D, Pace U, Scala D, Chiodini P, Granata V, Fares Bucci A, Pecori B, Delrio P (2019) Treatment of splenic flexure colon cancer: a comparison of three different surgical procedures: Experience of a high volume cancer center. Sci Rep 9(1):10953. https://doi.org/10.1038/s41598-019-47548-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schicchi N, Fogante M, Palumbo P, Agliata G, Esposto Pirani P, Di Cesare E, Giovagnoni A (2020) The sub-millisievert era in CTCA: the technical basis of the new radiation dose approach. Radiol Med 125(11):1024–1039. https://doi.org/10.1007/s11547-020-01280-1

    Article  PubMed  Google Scholar 

  8. Granata V, Grassi R, Fusco R, Izzo F, Brunese L, Delrio P, Avallone A, Pecori B, Petrillo A (2020) Current status on response to treatment in locally advanced rectal cancer: what the radiologist should know. Eur Rev Med Pharmacol Sci 24(23):12050–12062. https://doi.org/10.26355/eurrev_202012_23994

    Article  CAS  PubMed  Google Scholar 

  9. Park SH, Kim YS, Choi J (2021) Dosimetric analysis of the effects of a temporary tissue expander on the radiotherapy technique. Radiol Med 126(3):437–444. https://doi.org/10.1007/s11547-020-01297-6

    Article  PubMed  Google Scholar 

  10. Crimì F, Capelli G, Spolverato G, Bao QR, Florio A, Milite Rossi S, Cecchin D, Albertoni L, Campi C, Pucciarelli S, Stramare R (2020) MRI T2-weighted sequences-based texture analysis (TA) as a predictor of response to neoadjuvant chemo-radiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC). Radiol Med 125(12):1216–1224. https://doi.org/10.1007/s11547-020-01215-w

    Article  PubMed  Google Scholar 

  11. Bertocchi E, Barugola G, Nicosia L, Mazzola R, Ricchetti F, Dell’Abate P, Alongi F, Ruffo G (2020) A comparative analysis between radiation dose intensification and conventional fractionation in neoadjuvant locally advanced rectal cancer: a monocentric prospective observational study. Radiol Med 125:990–998. https://doi.org/10.1007/s11547-020-01189-9

    Article  PubMed  Google Scholar 

  12. Fornell-Perez R, Vivas-Escalona V, Aranda-Sanchez J, Gonzalez-Dominguez MC, Rubio-Garcia J, Aleman-Flores P, Lozano-Rodriguez A, Porcel-de-Peralta G, Loro-Ferrer JF (2020) Primary and post-chemoradiotherapy MRI detection of extramural venous invasion in rectal cancer: the role of diffusion-weighted imaging. Radiol Med 125(6):522–530. https://doi.org/10.1007/s11547-020-01137-7

    Article  PubMed  Google Scholar 

  13. Cusumano D, Meijer G, Lenkowicz J, Chiloiro G, Boldrini L, Masciocchi C, Dinapoli N, Gatta R, Casà C, Damiani A, Barbaro B, Gambacorta MA, Azario L, De Spirito M, Intven M, Valentini V (2021) A field strength independent MR radiomics model to predict pathological complete response in locally advanced rectal cancer. Radiol Med 126(3):421–429. https://doi.org/10.1007/s11547-020-01266-z

    Article  PubMed  Google Scholar 

  14. Fusco R, Sansone M, Granata V, Grimm R, Pace U, Delrio P, Tatangelo F, Botti G, Avallone A, Pecori B, Petrillo A (2019) Diffusion and perfusion MR parameters to assess preoperative short-course radiotherapy response in locally advanced rectal cancer: a comparative explorative study among standardized Index of shape by DCE-MRI, intravoxel incoherent motion- and diffusion kurtosis imaging-derived parameters. Abdom Radiol (NY) 44(11):3683–3700. https://doi.org/10.1007/s00261-018-1801-z

    Article  Google Scholar 

  15. Granata V, Caruso D, Grassi R, Cappabianca S, Reginelli A, Rizzati R, Masselli G, Golfieri R, Rengo M, Regge D, Lo Re G, Pradella S, Fusco R, Faggioni L, Laghi A, Miele V, Neri E, Coppola F (2021) Structured reporting of rectal cancer staging and restaging: a consensus proposal. Cancers (Basel) 13(9):2135. https://doi.org/10.3390/cancers13092135

    Article  PubMed Central  Google Scholar 

  16. Granata V, Fusco R, Reginelli A, Delrio P, Selvaggi F, Grassi R, Izzo F, Petrillo A (2019) Diffusion kurtosis imaging in patients with locally advanced rectal cancer: current status and future perspectives. J Int Med Res 47(6):2351–2360. https://doi.org/10.1177/0300060519827168

    Article  PubMed  PubMed Central  Google Scholar 

  17. Petrillo A, Fusco R, Granata V, Filice S, Sansone M, Rega D, Delrio P, Bianco F, Romano GM, Tatangelo F, Avallone A, Pecori B (2018) Assessing response to neo-adjuvant therapy in locally advanced rectal cancer using Intra-voxel Incoherent Motion modelling by DWI data and Standardized Index Of Shape From DCE-MRI. Ther Adv Med Oncol 16(10):1758835918809875. https://doi.org/10.1177/1758835918809875

    Article  CAS  Google Scholar 

  18. Fusco R, Granata V, Rega D, Russo C, Pace U, Pecori B, Tatangelo F, Botti G, Izzo F, Cascella M, Avallone A, Delrio P, Petrillo A (2019) Morphological and functional features prognostic factor of magnetic resonance imaging in locally advanced rectal cancer. Acta Radiol 60(7):815–825. https://doi.org/10.1177/0284185118803783

    Article  PubMed  Google Scholar 

  19. Fusco R, Petrillo M, Granata V, Filice S, Sansone M, Catalano O, Petrillo A (2017) Magnetic resonance imaging evaluation in neoadjuvant therapy of locally advanced rectal cancer: a systematic review. Radiol Oncol 51(3):252–262. https://doi.org/10.1515/raon-2017-0032

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rees M, Tekkis PP, Welsh FK, O’Rourke T, John TG (2008) Evaluation of long-term survival after hepatic resection for metastatic colorectal cancer: a multifactorial model of 929 patients. Ann Surg 247(1):125e135

    Article  Google Scholar 

  21. Abdalla EK, Vauthey JN, Ellis LM et al (2004) Recurrence and outcomes following hepatic resection, radiofrequency ablation, and combined resection/ablation for colorectal liver metastases. Ann Surg 239(6):818e825

    Article  Google Scholar 

  22. Vigano L, Capussotti L, Lapointe R et al (2014) Early recurrence after liver resection for colorectal metastases: risk factors, prognosis, and treatment. A LiverMetSurvey-based study of 6,025 patients. Ann Surg Oncol 21(4):1276e1286

    Article  Google Scholar 

  23. Petralia G, Zugni F, Summers PE, Colombo A, Pricolo P, Grazioli L, Colagrande S, Giovagnoni A, Padhani AR (2021) Italian working group on magnetic resonance. Whole-body magnetic resonance imaging (WB-MRI) for cancer screening: recommendations for use. Radiol Med 126(11):1434–1450. https://doi.org/10.1007/s11547-021-01392-2

    Article  PubMed  PubMed Central  Google Scholar 

  24. Petralia G, Summers PE, Agostini A, Ambrosini R, Cianci R, Cristel G, Calistri L, Colagrande S (2020) Dynamic contrast-enhanced MRI in oncology: how we do it. Radiol Med 125(12):1288–1300. https://doi.org/10.1007/s11547-020-01220-z

    Article  PubMed  Google Scholar 

  25. Granata V, Grassi R, Fusco R, Setola SV, Belli A, Ottaiano A, Nasti G, La Porta M, Danti G, Cappabianca S, Cutolo C, Petrillo A, Izzo F (2021) Intrahepatic cholangiocarcinoma and its differential diagnosis at MRI: how radiologist should assess MR features. Radiol Med 126(12):1584–1600. https://doi.org/10.1007/s11547-021-01428-7

    Article  PubMed  Google Scholar 

  26. Granata V, Bicchierai G, Fusco R, Cozzi D, Grazzini G, Danti G, De Muzio F, Maggialetti N, Smorchkova O, D’Elia M, Brunese MC, Grassi R, Giacobbe G, Bruno F, Palumbo P, Grassi F, Brunese L, Grassi R, Miele V, Barile A (2021) Diagnostic protocols in oncology: workup and treatment planning. Part 2: abbreviated MR protocol. Eur Rev Med Pharmacol Sci 25(21):6499–6528. https://doi.org/10.26355/eurrev_202111_27094

    Article  CAS  PubMed  Google Scholar 

  27. Gurgitano M, Angileri SA, Rodà GM, Liguori A, Pandolfi M, Ierardi AM, Wood BJ, Carrafiello G (2021) Interventional radiology ex-machina: impact of artificial intelligence on practice. Radiol Med 126(7):998–1006. https://doi.org/10.1007/s11547-021-01351-x

    Article  PubMed  PubMed Central  Google Scholar 

  28. Granata V, Fusco R, Costa M, Picone C, Cozzi D, Moroni C, La Casella GV, Montanino A, Monti R, Mazzoni F, Grassi R, Malagnino VG, Cappabianca S, Grassi R, Miele V, Petrillo A (2021) Preliminary report on computed tomography radiomics features as biomarkers to immunotherapy selection in lung adenocarcinoma patients. Cancers (Basel) 13(16):3992. https://doi.org/10.3390/cancers13163992

    Article  PubMed  PubMed Central  Google Scholar 

  29. Granata V, Fusco R, Barretta ML, Picone C, Avallone A, Belli A, Patrone R, Ferrante M, Cozzi D, Grassi R, Grassi R, Izzo F, Petrillo A (2021) Radiomics in hepatic metastasis by colorectal cancer. Infect Agent Cancer 16(1):39. https://doi.org/10.1186/s13027-021-00379-y

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fusco R, Piccirillo A, Sansone M, Granata V, Rubulotta MR, Petrosino T, Barretta ML, Vallone P, Di Giacomo R, Esposito E, Di Bonito M, Petrillo A (2021) Radiomics and artificial intelligence analysis with textural metrics extracted by contrast-enhanced mammography in the breast lesions classification. Diagnostics (Basel) 11(5):815. https://doi.org/10.3390/diagnostics11050815

    Article  Google Scholar 

  31. Fusco R, Granata V, Mazzei MA, Meglio ND, Roscio DD, Moroni C, Monti R, Cappabianca C, Picone C, Neri E, Coppola F, Montanino A, Grassi R, Petrillo A, Miele V (2021) Quantitative imaging decision support (QIDS™) tool consistency evaluation and radiomic analysis by means of 594 metrics in lung carcinoma on chest CT scan. Cancer Control 28:1073274820985786. https://doi.org/10.1177/1073274820985786

    Article  PubMed  PubMed Central  Google Scholar 

  32. Granata V, Fusco R, Avallone A, De Stefano A, Ottaiano A, Sbordone C, Brunese L, Izzo F, Petrillo A (2021) Radiomics-derived data by contrast enhanced magnetic resonance in ras mutations detection in colorectal liver metastases. Cancers (Basel) 13(3):453. https://doi.org/10.3390/cancers13030453

    Article  Google Scholar 

  33. Granata V, Fusco R, Risi C, Ottaiano A, Avallone A, De Stefano A, Grimm R, Grassi R, Brunese L, Izzo F, Petrillo A (2020) Diffusion-weighted MRI and diffusion kurtosis imaging to detect RAS mutation in colorectal liver metastasis. Cancers (Basel) 12(9):2420. https://doi.org/10.3390/cancers12092420

    Article  CAS  Google Scholar 

  34. Petralia G, Summers PE, Agostini A, Ambrosini R, Cianci R, Cristel G, Calistri L, Colagrande S (2020) Dynamic contrast-enhanced MRI in oncology: how we do it. Radiol Med 125:1288–1300. https://doi.org/10.1007/s11547-020-01220-z

    Article  PubMed  Google Scholar 

  35. Ria F, Samei E (2020) Is regulatory compliance enough to ensure excellence in medicine? Radiol Med 125:904–905. https://doi.org/10.1007/s11547-020-01171-5

    Article  PubMed  Google Scholar 

  36. Zhang A, Song J, Ma Z, Chen T (2020) Combined dynamic contrast-enhanced magnetic resonance imaging and diffusion-weighted imaging to predict neoadjuvant chemotherapy effect in FIGO stage IB2-IIA2 cervical cancers. Radiol Med 125:1233–1242. https://doi.org/10.1007/s11547-020-01214-x

    Article  PubMed  Google Scholar 

  37. Crimi F, Capelli G, Spolverato G, Bao QR, Florio A, Milite Rossi S, Cecchin D, Albertoni L, Campi C, Pucciarelli S et al (2020) MRI T2-weighted sequences-based texture analysis (TA) as a predictor of response to neoadjuvant chemo-radiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC). Radiol Med 125:1216–1224. https://doi.org/10.1007/s11547-020-01215-w

    Article  PubMed  Google Scholar 

  38. Kirienko M, Ninatti G, Cozzi L, Voulaz E, Gennaro N, Barajon I, Ricci F, Carlo-Stella C, Zucali P, Sollini M et al (2020) Computed tomography (CT)-derived radiomic features differentiate prevascular mediastinum masses as thymic neoplasms versus lymphomas. Radiol Med 125:951–960. https://doi.org/10.1007/s11547-020-01188-w

    Article  PubMed  Google Scholar 

  39. Zhang L, Kang L, Li G, Zhang X, Ren J, Shi Z, Li J, Yu S (2020) Computed tomography-based radiomics model for discriminating the risk stratification of gastrointestinal stromal tumors. Radiol Med 125:465–473. https://doi.org/10.1007/s11547-020-01138-6

    Article  PubMed  Google Scholar 

  40. Scapicchio C, Gabelloni M, Barucci A, Cioni D, Saba L, Neri E (2021) A deep look into radiomics. Radiol Med 126(10):1296–1311. https://doi.org/10.1007/s11547-021-01389-x

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wei J, Jiang H, Gu D, Niu M, Fu F, Han Y, Song B, Tian J (2020) Radiomics in liver diseases: Current progress and future opportunities. Liver Int 40(9):2050–2063. https://doi.org/10.1111/liv.14555

    Article  PubMed  PubMed Central  Google Scholar 

  42. Saini A, Breen I, Pershad Y, Naidu S, Knuttinen MG, Alzubaidi S, Sheth R, Albadawi H, Kuo M, Oklu R (2018) Radiogenomics and radiomics in liver cancers. Diagnostics (Basel) 9(1):4. https://doi.org/10.3390/diagnostics9010004

    Article  CAS  Google Scholar 

  43. Mathew RP, Sam M, Raubenheimer M, Patel V, Low G (2020) Hepatic hemangiomas: the various imaging avatars and its mimickers. Radiol Med 125(9):801–815. https://doi.org/10.1007/s11547-020-01185-z

    Article  PubMed  Google Scholar 

  44. Nardone V, Reginelli A, Grassi R, Boldrini L, Vacca G, D’Ippolito E, Annunziata S, Farchione A, Belfiore MP, Desideri I, Cappabianca S (2021) Delta radiomics: a systematic review. Radiol Med 126(12):1571–1583. https://doi.org/10.1007/s11547-021-01436-7

    Article  PubMed  Google Scholar 

  45. Brunese L, Brunese MC, Carbone M, Ciccone V, Mercaldo F, Santone A (2021) Automatic PI-RADS assignment by means of formal methods. Radiol Med. https://doi.org/10.1007/s11547-021-01431-y

    Article  PubMed  PubMed Central  Google Scholar 

  46. van der Lubbe MFJA, Vaidyanathan A, de Wit M, van den Burg EL, Postma AA, Bruintjes TD, Bilderbeek-Beckers MAL, Dammeijer PFM, Bossche SV, Van Rompaey V, Lambin P, van Hoof M, van de Berg R (2021) A non-invasive, automated diagnosis of Menière’s disease using radiomics and machine learning on conventional magnetic resonance imaging: a multicentric, case-controlled feasibility study. Radiol Med. https://doi.org/10.1007/s11547-021-01425-w

    Article  PubMed  PubMed Central  Google Scholar 

  47. Granata V, Fusco R, Avallone A, Cassata A, Palaia R, Delrio P, Grassi R, Tatangelo F, Grazzini G, Izzo F, Petrillo A (2020) Abbreviated MRI protocol for colorectal liver metastases: how the radiologist could work in pre surgical setting. PLoS ONE 15(11):e0241431. https://doi.org/10.1371/journal.pone.0241431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Santone A, Brunese MC, Donnarumma F, Guerriero P, Mercaldo F, Reginelli A, Miele V, Giovagnoni A, Brunese L (2021) Radiomic features for prostate cancer grade detection through formal verification. Radiol Med. https://doi.org/10.1007/s11547-020-01314-8

    Article  PubMed  Google Scholar 

  49. Agazzi GM, Ravanelli M, Roca E, Medicina D, Balzarini P, Pessina C, Vermi W, Berruti A, Maroldi R, Farina D (2021) CT texture analysis for prediction of EGFR mutational status and ALK rearrangement in patients with non-small cell lung cancer. Radiol Med. https://doi.org/10.1007/s11547-020-01323-7

    Article  PubMed  Google Scholar 

  50. Benedetti G, Mori M, Panzeri MM, Barbera M, Palumbo D, Sini C, Muffatti F, Andreasi V, Steidler S, Doglioni C, Partelli S, Manzoni M, Falconi M, Fiorino C, De Cobelli F (2021) CT-derived radiomic features to discriminate histologic characteristics of pancreatic neuroendocrine tumors. Radiol Med. https://doi.org/10.1007/s11547-021-01333-z

    Article  PubMed  Google Scholar 

  51. Granata V, Fusco R, Venanzio Setola S, Mattace Raso M, Avallone A, De Stefano A, Nasti G, Palaia R, Delrio P, Petrillo A, Izzo F (2019) Liver radiologic findings of chemotherapy-induced toxicity in liver colorectal metastases patients. Eur Rev Med Pharmacol Sci 23(22):9697–9706. https://doi.org/10.26355/eurrev_201911_19531

    Article  CAS  PubMed  Google Scholar 

  52. Granata V, Fusco R, Maio F, Avallone A, Nasti G, Palaia R, Albino V, Grassi R, Izzo F, Petrillo A (2019) Qualitative assessment of EOB-GD-DTPA and Gd-BT-DO3A MR contrast studies in HCC patients and colorectal liver metastases. Infect Agent Cancer 27(14):40. https://doi.org/10.1186/s13027-019-0264-3

    Article  CAS  Google Scholar 

  53. Granata V, Fusco R, de Lutio di Castelguidone E, Avallone A, Palaia R, Delrio P, Tatangelo F, Botti G, Grassi R, Izzo F, Petrillo A (2019) Diagnostic performance of gadoxetic acid-enhanced liver MRI versus multidetector CT in the assessment of colorectal liver metastases compared to hepatic resection. BMC Gastroenterol 19(1):129. https://doi.org/10.1186/s12876-019-1036-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Reynolds IS, Furney SJ, Kay EW, McNamara DA, Prehn JHM, Burke JP (2019) Meta- analysis of the molecular associations of mucinous colorectal cancer. Br J Surg 106(6):682e691

    Article  Google Scholar 

  55. Reynolds IS, O’Connell E, Fichtner M et al (2020) Mucinous adenocarcinoma is a pharmacogenomically distinct subtype of colorectal cancer. Pharmacogenomics J 20(3):524e532

    Article  Google Scholar 

  56. McCawley N, Clancy C, O’Neill BD, Deasy J, McNamara DA, Burke JP (2016) Mucinous rectal adenocarcinoma is associated with a poor response to neoadjuvant chemoradiotherapy: a systematic review and meta-analysis. Dis Colon Rectum 59(12):1200e1208

    Article  Google Scholar 

  57. Granata V, Fusco R, Avallone A, Catalano O, Piccirillo M, Palaia R, Nasti G, Petrillo A, Izzo F (2018) A radiologist’s point of view in the presurgical and intraoperative setting of colorectal liver metastases. Future Oncol 14(21):2189–2206. https://doi.org/10.2217/fon-2018-0080

    Article  CAS  PubMed  Google Scholar 

  58. Van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin JC, Pieper S, Aerts HJWL (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77:e104–e107. https://doi.org/10.1158/0008-5472.CAN-17-0339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, Ashrafinia S, Bakas S, Beukinga RJ, Boellaard R et al (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295:328–338

    Article  Google Scholar 

  60. Fusco R, Sansone M, Filice S, Carone G, Amato DM, Sansone C, Petrillo A (2016) Pattern recognition approaches for breast cancer dce-mri classification: a systematic review. J Med Biol Eng 36:449–459. https://doi.org/10.1007/s40846-016-0163-7

    Article  PubMed  PubMed Central  Google Scholar 

  61. Beckers RCJ, Trebeschi S, Maas M, Schnerr RS, Sijmons JML, Beets GL, Houwers JB, Beets-Tan RGH, Lambregts DMJ (2018) CT texture analysis in colorectal liver metastases and the surrounding liver parenchyma and its potential as an imaging biomarker of disease aggressiveness, response and survival. Eur J Radiol 102:15–21

    Article  CAS  Google Scholar 

  62. Andersen IR, Thorup K, Andersen MB, Olesen R, Mortensen FV, Nielsen DT, Rasmussen F (2019) Texture in the monitoring of regorafenib therapy in patients with colorectal liver metastases. Acta Radiol 60:1084–1093

    Article  Google Scholar 

  63. Zhang H, Li W, Hu F, Sun Y, Hu T, Tong T (2018) MR texture analysis: potential imaging biomarker for predicting the chemotherapeutic response of patients with colorectal liver metastases. Abdom Radiol 44:65–71

    Article  Google Scholar 

  64. Lubner MG, Stabo N, Lubner SJ, del Rio AM, Song C, Halberg RB, Pickhardt PJ (2015) CT textural analysis of hepatic metastatic colorectal cancer: pre-treatment tumor heterogeneity correlates with pathology and clinical outcomes. Abdom Imaging 40:2331–2337

    Article  Google Scholar 

  65. Simpson AL, Doussot A, Creasy JM, Adams LB, Allen PJ, DeMatteo RP, Gönen M, Kemeny NE, Kingham TP, Shia J et al (2017) Computed tomography image texture: a noninvasive prognostic marker of hepatic recurrence after hepatectomy for metastatic colorectal cancer. Ann Surg Oncol 24:2482–2490

    Article  Google Scholar 

  66. Ganeshan B, Miles KA, Young RC, Chatwin CR (2007) Hepatic enhancement in colorectal cancer: texture analysis correlates with hepatic hemodynamics and patient survival. Acad Radiol 14:1520–1530

    Article  Google Scholar 

  67. Rahmim A, Bak-Fredslund KP, Ashrafinia S, Lu L, Schmidtlein C, Subramaniam RM, Morsing A, Keiding S, Horsager J, Munk OL (2019) Prognostic modeling for patients with colorectal liver metastases incorporating FDG PET radiomic features. Eur J Radiol 113:101–109

    Article  Google Scholar 

  68. Dercle L, Lu L, Schwartz LH, Qian M, Tejpar S, Eggleton P, Zhao B, Piessevaux H (2020) Radiomics response signature for identification of metastatic colorectal cancer sensitive to therapies targeting EGFR pathway. J Natl Cancer Inst 112:902–912

    Article  Google Scholar 

  69. Ravanelli M, Agazzi GM, Tononcelli E, Roca E, Cabassa P, Baiocchi GL, Berruti A, Maroldi R, Farina D (2019) Texture features of colorectal liver metastases on pretreatment contrast-enhanced CT may predict response and prognosis in patients treated with bevacizumab-containing chemotherapy: a pilot study including comparison with standard chemotherapy. Radiol Med 124:877–886

    Article  Google Scholar 

  70. Taghavi M, Staal FC, Simões R, Hong EK, Lambregts DM, van der Heide UA, Beets-Tan RG, Maas M (2021) CT radiomics models are unable to predict new liver metastasis after successful thermal ablation of colorectal liver metastases. Acta Radiol 17:2841851211060437. https://doi.org/10.1177/02841851211060437

    Article  Google Scholar 

  71. Granata V, Fusco R, Catalano O, Filice S, Amato DM, Nasti G, Avallone A, Izzo F, Petrillo A (2015) Early assessment of colorectal cancer patients with liver metastases treated with antiangiogenic drugs: the role of intravoxel incoherent motion in diffusion-weighted imaging. PLoS ONE 10(11):e0142876. https://doi.org/10.1371/journal.pone.0142876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Granata V, Fusco R, Petrillo A (2021) Additional considerations on use of abbreviated liver MRI in patients with colorectal liver metastases. AJR Am J Roentgenol 217(1):W1. https://doi.org/10.2214/AJR.21.25652

    Article  PubMed  Google Scholar 

  73. Esposito A, Buscarino V, Raciti D, Casiraghi E, Manini M, Biondetti P, Forzenigo L (2020) Characterization of liver nodules in patients with chronic liver disease by MRI: performance of the liver imaging reporting and data system (LI-RADS vol 2018) scale and its comparison with the likert scale. Radiol Med 125(1):15–23. https://doi.org/10.1007/s11547-019-01092-y

    Article  PubMed  Google Scholar 

  74. Bozkurt M, Eldem G, Bozbulut UB, Bozkurt MF, Kılıçkap S, Peynircioğlu B, Çil B, Lay Ergün E, Volkan-Salanci B (2021) Factors affecting the response to Y-90 microsphere therapy in the cholangiocarcinoma patients. Radiol Med 126(2):323–333. https://doi.org/10.1007/s11547-020-01240-9

    Article  PubMed  Google Scholar 

  75. Shin N, Choi JA, Choi JM, Cho ES, Kim JH, Chung JJ, Yu JS (2020) Sclerotic changes of cavernous hemangioma in the cirrhotic liver: long-term follow-up using dynamic contrast-enhanced computed tomography. Radiol Med 125:1225–1232

    Article  Google Scholar 

  76. Granata V, Fusco R, De Muzio F, Cutolo C, Setola SV, Dell’Aversana F, Ottaiano A, Nasti G, Grassi R, Pilone V, Miele V, Brunese MC, Tatangelo F, Izzo F, Petrillo A (2022) EOB-MR based radiomics analysis to assess clinical outcomes following liver resection in colorectal liver metastases. Cancers 14(5):1239. https://doi.org/10.3390/cancers14051239

    Article  PubMed  PubMed Central  Google Scholar 

  77. Granata V, Fusco R, De Muzio F, Cutolo C, Setola SV, dell’ Aversana F, Ottaiano A, Avallone A, Nasti G, Grassi F, Pilone V, Miele V, Brunese L, Izzo F, Petrillo A (2022) Contrast MR-based radiomics and machine learning analysis to assess clinical outcomes following liver resection in colorectal liver metastases: a preliminary study. Cancers 14(5):1110. https://doi.org/10.3390/cancers14051110

    Article  PubMed  PubMed Central  Google Scholar 

  78. Granata V, Fusco R, De Muzio F, Cutolo C, Setola SV, Dell’Aversana F, Belli A, Romano C, Ottaiano A, Nasti G et al (2022) Magnetic resonance features of liver mucinous colorectal metastases: what the radiologist should know. J Clin Med 11:2221. https://doi.org/10.3390/jcm11082221

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bimonte S, Leongito M, Barbieri A, Del Vecchio V, Barbieri M, Albino V, Piccirillo M, Amore A, Di Giacomo R, Nasto A, Granata V, Petrillo A, Arra C, Izzo F (2015) Inhibitory effect of (-)-epigallocatechin-3-gallate and bleomycin on human pancreatic cancer MiaPaca-2 cell growth. Infect Agent Cancer 29(10):22. https://doi.org/10.1186/s13027-015-0016-y

    Article  CAS  Google Scholar 

  80. Avallone A, Pecori B, Bianco F, Aloj L, Tatangelo F, Romano C, Granata V, Marone P, Leone A, Botti G, Petrillo A, Caracò C, Iaffaioli VR, Muto P, Romano G, Comella P, Budillon A, Delrio P (2015) Critical role of bevacizumab scheduling in combination with pre-surgical chemo-radiotherapy in MRI-defined high-risk locally advanced rectal cancer: results of the BRANCH trial. Oncotarget 6(30):30394–30407. https://doi.org/10.18632/oncotarget.4724

    Article  PubMed  PubMed Central  Google Scholar 

  81. Granata V, Fusco R, Setola SV, De Muzio F, Dell’ Aversana F, Cutolo C, Faggioni L, Miele V, Izzo F, Petrillo A (2022) CT-based radiomics analysis to predict histopathological outcomes following liver resection in colorectal liver metastases. Cancers (Basel) 14(7):1648. https://doi.org/10.3390/cancers14071648.PMID:35406419;PMCID:PMC8996874

    Article  CAS  PubMed Central  Google Scholar 

  82. Granata V, Fusco R, De Muzio F, Cutolo C, Setola SV, Grassi R, Grassi F, Ottaiano A, Nasti G, Tatangelo F, Pilone V, Miele V, Brunese MC, Izzo F, Petrillo A (2022) Radiomics textural features by MR imaging to assess clinical outcomes following liver resection in colorectal liver metastases. Radiol Med. https://doi.org/10.1007/s11547-022-01477-6

    Article  PubMed  PubMed Central  Google Scholar 

  83. Petrillo A, Fusco R, Petrillo M, Granata V, Delrio P, Bianco F, Pecori B, Botti G, Tatangelo F, Caracò C, Aloj L, Avallone A, Lastoria S (2017) Standardized Index of Shape (DCE-MRI) and Standardized Uptake Value (PET/CT): two quantitative approaches to discriminate chemo-radiotherapy locally advanced rectal cancer responders under a functional profile. Oncotarget 8(5):8143–8153. https://doi.org/10.18632/oncotarget.14106

    Article  PubMed  Google Scholar 

  84. Fusco R, Granata V, Grazzini G, Pradella S, Borgheresi A, Bruno A, Palumbo P, Bruno F, Grassi R, Giovagnoni A, Grassi R, Miele V, Barile A (2022) Radiomics in medical imaging: pitfalls and challenges in clinical management. Jpn J Radiol. https://doi.org/10.1007/s11604-022-01271-4

    Article  PubMed  Google Scholar 

  85. Tagliafico AS, Campi C, Bianca B, Bortolotto C, Buccicardi D, Francesca C, Prost R, Rengo M, Faggioni L (2022) Blockchain in radiology research and clinical practice: current trends and future directions. Radiol Med 127(4):391–397. https://doi.org/10.1007/s11547-022-01460-1

    Article  PubMed  PubMed Central  Google Scholar 

  86. Coppola F, Giannini V, Gabelloni M, Panic J, Defeudis A, Lo Monaco S, Cattabriga A, Cocozza MA, Pastore LV, Polici M, Caruso D, Laghi A, Regge D, Neri E, Golfieri R, Faggioni L (2021) Radiomics and magnetic resonance imaging of rectal cancer: from engineering to clinical practice. Diagnostics (Basel) 11(5):756. https://doi.org/10.3390/diagnostics11050756.PMID:33922483;PMCID:PMC8146913

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Alessandra Trocino, librarian at the National Cancer Institute of Naples, Italy. Moreover, for the collaboration, authors are grateful for the research support to Paolo Pariate, Martina Totaro and Andrea Esposito of Radiology Division, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Napoli, Italy.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Each author has participated sufficiently to take public responsibility for the content of the manuscript.

Corresponding author

Correspondence to Roberta Fusco.

Ethics declarations

Conflicts of interest

The authors have not disclosed any conflict of interest.

Ethical standard

Ethical standards This article does not contain any studies with human participants or animals performed by any of the authors.

Institutional review board statement

This study aligned with National appropriate guidelines and procedures. The Local Ethical Committee board approved this retrospective study.

Informed consent statement

This study aligned with National appropriate guidelines and procedures. Renouncing the need for informed patient consent given the study nature.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Granata, V., Fusco, R., De Muzio, F. et al. Radiomics and machine learning analysis based on magnetic resonance imaging in the assessment of liver mucinous colorectal metastases. Radiol med 127, 763–772 (2022). https://doi.org/10.1007/s11547-022-01501-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-022-01501-9

Keywords

Navigation