Skip to main content
Log in

Dynamic contrast-enhanced MRI in oncology: how we do it

  • CONTRAST MEDIA
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) is particularly attractive for clinical application in perfusion imaging thanks to the absence of ionizing radiation and limited volumes of contrast agent (CA) necessary. Dynamic contrast-enhanced MRI (DCE–MRI) involves sequentially acquiring T1-weighted images through an organ of interest during the passage of a bolus administration of CA. It is a particularly flexible approach to perfusion imaging as the signal intensity time course allows not only rapid qualitative assessment, but also quantitative measures of intrinsic perfusion and permeability parameters. We examine aspects of the T1-weighted image series acquisition, CA administration, post-processing that constitute a DCE–MRI study in clinical practice, before considering some heuristics that may aid in interpreting the resulting contrast enhancement time series. While qualitative DCE–MRI has a well-established role in the diagnostic assessment of a range of tumours, and a central role in MR mammography, clinical use of quantitative DCE–MRI remains limited outside of clinical trials. The recent publication of proposals for standardized acquisition and analysis protocols for DCE–MRI by the Quantitative Imaging Biomarker Alliance may be an opportunity to consolidate and advance clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hanahan D, Weinberg R (2000) The hallmarks of cancer. Cell 144(5):646–674. https://doi.org/10.1016/S0092-8674(00)81683-9

    Article  Google Scholar 

  2. Radue EW, Kendall BE (1978) Xenon enhancement in tumours and infarcts. Neuroradiology 16:224–227

    Article  CAS  Google Scholar 

  3. Cherry SR, Carnochan P, Babich JW, Serafini F, Rowell NP, Watson IA (1990) Quantitative in vivo measurements of tumor perfusion using rubidium-81 and positron emission tomography. J Nucl Med 31(8):1307–1315

    CAS  PubMed  Google Scholar 

  4. Brix G, Semmler W, Port R, Schad LR, Layer G, Lorenz WJ (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15(4):621–628

    Article  CAS  Google Scholar 

  5. Petralia G, Preda L, D’Andrea G, Viotti S, Bonello L, De Filippi R, Bellomi M (2010) CT perfusion in solid-body tumours. Part I: technical issues. Radiol Med 115(6):843–857. https://doi.org/10.1007/s11547-010-0519-y

    Article  CAS  PubMed  Google Scholar 

  6. Petralia G, Bonello L, Viotti S, Preda L, d’Andrea G, Bellomi M (2010) CT perfusion in oncology: how to do it. Cancer Imaging 10:8–19. https://doi.org/10.1102/1470-7330.2010.0001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thomas DL, Lythgoe MF, Pell GS, Calamante F, Ordidge RJ (2000) The measurement of diffusion and perfusion in biological systems using magnetic resonance imaging. Phys Med Biol 45(8):R97–R138. https://doi.org/10.1088/0031-9155/45/8/201

    Article  CAS  PubMed  Google Scholar 

  8. Villringer A, Rosen BR, Belliveau JW (1988) Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 6:164–174

    Article  CAS  Google Scholar 

  9. Detre JA, Leigh JS, Williams DS, Koretsky AP (1992) Perfusion imaging. Magn Reson Med 2:337–345

    Google Scholar 

  10. Krestin GP, Steinbrich W, Friedmann G (1989) Adrenal masses: evaluation with fast gradient-echo MR imaging and Gd-DTPA-enhanced dynamic studies. Radiology 171(3):675–680

    Article  CAS  Google Scholar 

  11. Zierler K (2000) Indicator dilution methods for measuring blood flow, volume, and other properties of biological systems: a brief history and memoir. Ann Biomed Eng 28(8):836–848

    Article  CAS  Google Scholar 

  12. Milnor WR (1990) Cardiovascular physiology. Oxford University Press, New York

    Google Scholar 

  13. McDonald DM, Baluk P (2005) Imaging of angiogenesis in inflamed airways and tumors: newly formed blood vessels are not alike and may be wildly abnormal: Parker B. Francis Lecture. Chest 128(6 Suppl):602S–608S

    Article  Google Scholar 

  14. Xiao Y, Paudel R, Liu J, Ma C, Zhang Z, Zhou S (2016) MRI contrast agents: classification and application (Review). Int J Mol Med 38:1319–1326. https://doi.org/10.3892/ijmm.2016.2744

    Article  CAS  PubMed  Google Scholar 

  15. Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7(1):91–101. https://doi.org/10.1002/jmri.1880070113

    Article  CAS  PubMed  Google Scholar 

  16. Sourbron SP, Buckley DL (2013) Classic models for dynamic contrast-enhanced MRI. NMR Biomed 26(8):1004–1027. https://doi.org/10.1002/nbm.2940

    Article  PubMed  Google Scholar 

  17. Khalifa F, Soliman A, El-Baz A et al (2014) Models and methods for analyzing DCE–MRI: a review. Med Phys 41(12):124301. https://doi.org/10.1118/1.4898202

    Article  PubMed  Google Scholar 

  18. Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232

    Article  CAS  Google Scholar 

  19. Buckley DL, Kerslake RW, Blackband SJ, Horsman A (1994) Quantitative analysis of multi-slice Gd-DTPA enhanced dynamic MR images using an automated simplex minimization procedure. Magn Reson Med 1994 32(5):646–651. Erratum in: Magn Reson Med 33(2):282

  20. Terada T, Nambu K, Hyotani G et al (1992) A method for quantitative measurement of cerebral vascular-permeability using X-ray CT and iodinated contrast-medium. Neuroradiology 34:290–296

    Article  CAS  Google Scholar 

  21. Taylor J, Summers PE, Keevil SF, Saks AM, Diskin J, Hilton PJ, Ayers AB (1997) Magnetic resonance renography: optimisation of pulse sequence parameters and Gd-DTPA dose, and comparison with radionuclide renography. Magn Reson Imaging 15(6):637–649

    Article  CAS  Google Scholar 

  22. US Food & Drug Administration (2017) Safety: Gadolinium-based Contrast Agents (GBCAs): Drug Safety Communication—Retained in Body; New Class Warnings. https://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm589580.htm. Accessed 4 Sept 2019

  23. Cuenod CA, Balvay D (2013) Perfusion and vascular permeability: basic concepts and measurement in DCE-CT and DCE–MRI. Diagn Interv Imaging 94(12):1187–1204. https://doi.org/10.1016/j.diii.2013.10.010

    Article  CAS  PubMed  Google Scholar 

  24. Tofts PS, Parker GJM (2013) DCE–MRI: acquisition and analysis techniques. In: Barker PB, Golay X, Zaharchuk G (eds) Clinical perfusion MR. Cambridge University Press, Cambridge, pp 58–74

    Chapter  Google Scholar 

  25. Shukla-Dave A, Obuchowski NA, Chenevert TL et al (2019) Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE–MRI derived biomarkers in multicenter oncology trials. J Magn Reson Imaging 49(7):e101–e121. https://doi.org/10.1002/jmri.26518

    Article  PubMed  Google Scholar 

  26. Thrippleton MJ, Backes WH, Sourbron S et al (2019) Quantifying blood-brain barrier leakage in small vessel disease: review and consensus recommendations. Alzheimers Dement 15(6):840–858. https://doi.org/10.1016/j.jalz.2019.01.013

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mann RM, Kuhl CK, Kinkel K, Boetes C (2008) Breast MRI: guidelines from the European Society of Breast Imaging. Eur Radiol 18(7):1307–1318. https://doi.org/10.1007/s00330-008-0863-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. PI-RADS™ Prostate Imaging – Reporting and Data System 2015 version 2. https://www.acr.org/-/media/ACR/Files/Pi-RADS/PIRADS-V2. Accessed 1 Oct. 2019

  29. Haase A, Frahm J, Matthaei D, Hanicke W, Merboldt KD (1986) FLASH imaging—rapid NMR imaging using low flip-angle pulses. J Magn Reson 67:258–266

    CAS  Google Scholar 

  30. Brookes JA, Redpath TW, Gilbert FJ, Murray AD, Staff RT (1999) Accuracy of T1 measurement in dynamic contrast-enhanced breast MRI using two- and three-dimensional variable flip angle fast low-angle shot. J Magn Reson Imaging 9(2):163–171

    Article  CAS  Google Scholar 

  31. Buckley L, Parker GJM (2005) Measuring contrast agent concentration in T1-weighted dynamic contrast-enhanced MRI. In: Jackson A, Buckley DL, Parker GJM (eds) Dynamic contrast-enhanced magnetic resonance imaging in oncology. Medical radiology (diagnostic imaging). Springer, Berlin, pp 69–79. https://doi.org/10.1007/3-540-26420-5_5

    Chapter  Google Scholar 

  32. Gaddikeri S, Gaddikeri RS, Tailor T, Anzai Y (2016) Dynamic contrast-enhanced MR imaging in head and neck cancer: techniques and clinical applications. AJNR Am J Neuroradiol 37(4):588–595

    Article  CAS  Google Scholar 

  33. Davis AJ, Remain R, Srinivasan A, Fatterpekar GM (2018) Perfusion and permeability imaging for head and neck cancer: theory, acquisition, postprocessing, and relevance to clinical imaging. Magn Reson Imaging Clin N Am 26(1):19–35. https://doi.org/10.1016/j.mric.2017.08.002

    Article  PubMed  Google Scholar 

  34. Bane O, Hectors SJ, Wagner M et al (2018) Accuracy, repeatability, and interplatform reproducibility of T1 quantification methods used for DCE–MRI: results from a multicenter phantom study. Magn Reson Med 79(5):2564–2575. https://doi.org/10.1002/mrm.26903

    Article  PubMed  Google Scholar 

  35. Fram EK, Herfkens RJ, Johnson GA et al (1987) Rapid calculation of T1 using variable flip angle gradient refocused imaging. Magn Reson Imaging 5:201–220

    Article  CAS  Google Scholar 

  36. Wang HZ, Riederer SJ, Lee JN (1987) Optimizing the precision in T1 relaxation estimation using limited flip angles. Magn Reson Med 5:399–416

    Article  CAS  Google Scholar 

  37. Di Giovanni P, Azlan CA, Ahearn TS, Semple SI, Gilbert FJ, Redpath TW (2010) The accuracy of pharmacokinetic parameter measurement in DCE–MRI of the breast at 3T. Phys Med Biol 55(1):121–132

    Article  Google Scholar 

  38. Treier R, Steingoetter A, Fried M, Schwizer W, Boesiger P (2007) Optimized and combined T1 and B1 mapping technique for fast and accurate T1 quantification in contrast-enhanced abdominal MRI. Magn Reson Med 57(3):568–576

    Article  Google Scholar 

  39. Koh TS, Bisdas S, Koh DM, Thng CH (2011) Fundamentals of tracer kinetics for dynamic contrast-enhanced MRI. J Magn Reson Imaging 34:1262–1276. https://doi.org/10.1002/jmri.22795

    Article  PubMed  Google Scholar 

  40. Leach MO, Brindle KM, Evelhoch JL et al (2005) The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 92(9):1599–1610. https://doi.org/10.1038/sj.bjc.6602550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Radjenovic A, Ridgway JP, Smith MA (2006) A method for pharmacokinetic modelling of dynamic contrast enhanced MRI studies of rapidly enhancing lesions acquired in a clinical setting. Phys Med Biol 51(9):N187–N197. https://doi.org/10.1088/0031-9155/51/9/N03

    Article  CAS  PubMed  Google Scholar 

  42. Essig M, Shiroishi MS, Nguyen TB et al (2013) Perfusion MRI: the five most frequently asked technical questions. AJR Am J Roentgenol 200(1):24–34. https://doi.org/10.2214/AJR.12.9543

    Article  PubMed  PubMed Central  Google Scholar 

  43. Brookes JA, Redpath TW, Gilbert FJ, Murray AD, Staff RT (1999) Accuracy of T1 measurement in dynamic contrast-enhanced breast MRI using two- and three-dimensional variable flip angle fast low-angle shot. J Magn Reson Imaging 9:163–171

    Article  CAS  Google Scholar 

  44. Jansen MJA, Kuijf HJ, Veldhuis WB, Wessels FJ, van Leeuwen MS, Pluim JPW (2017) Evaluation of motion correction for clinical dynamic contrast enhanced MRI of the liver. Phys Med Biol 62(19):7556–7568. https://doi.org/10.1088/1361-6560/aa8848

    Article  CAS  PubMed  Google Scholar 

  45. Flanagan FL, Murray JG, Gilligan P, Stack JP, Ennis JT (1995) Digital subtraction in Gd-DTPA enhanced imaging of the breast. Clin Radiol 50:848–854

    Article  CAS  Google Scholar 

  46. Schnall MD, Blume J, Bluemke DA et al (2006) Diagnostic architectural and dynamic features at breast MR imaging: multicenter study. Radiology 238:42–53

    Article  Google Scholar 

  47. Macura KJ, Ouwerkerk R, Jacobs MA, Bluemke DA (2006) Patterns of enhancement on breast MR images: interpretation and imaging pitfalls. Radiographics 26:1719–1734. https://doi.org/10.1148/rg.266065025

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tuncbilek N, Karakas HM, Okten OO (2005) Dynamic contrast enhanced MRI in the differential diagnosis of soft tissue tumors. Eur J Radiol 53(3):500–505. https://doi.org/10.1016/j.ejrad.2004.04.012

    Article  PubMed  Google Scholar 

  49. Reddick WE, Taylor JS, Fletcher BD (1999) Dynamic MR imaging (DEMRI) of microcirculation in bone sarcoma. J Magn Reson Imaging 10(3):277–285. https://doi.org/10.1002/(sici)1522-2586(199909)10:3%3c277:aid-jmri8%3e3.0.co;2-s

    Article  CAS  PubMed  Google Scholar 

  50. Ostergaard M, Stoltenberg M, Løvgreen-Nielsen P, Volck B, Sonne-Holm S, Lorenzen I (1998) Quantification of synovistis by MRI: correlation between dynamic and static gadolinium-enhanced magnetic resonance imaging and microscopic and macroscopic signs of synovial inflammation. Magn Reson Imaging 16(7):743–754. https://doi.org/10.1016/s0730-725x(98)00008-3

    Article  CAS  PubMed  Google Scholar 

  51. Medved M, Karczmar G, Yang C et al (2004) Semiquantitative analysis of dynamic contrast enhanced MRI in cancer patients: variability and changes in tumor tissue over time. J Magn Reson Imaging 20(1):122–128. https://doi.org/10.1002/jmri.20061

    Article  PubMed  Google Scholar 

  52. Krishnan P, Murphy A, Aviv RI (2017) CT-based techniques for brain perfusion. Top Magn Reson Imaging 26(3):113–119. https://doi.org/10.1097/RMR.0000000000000129

    Article  PubMed  Google Scholar 

  53. Gückel F, Brix G, Rempp K, Deimling M, Röther J, Georgi M (1994) Assessment of cerebral blood volume with dynamic susceptibility contrast enhanced gradient-echo imaging. J Comput Assist Tomogr 18(3):344–351

    Article  Google Scholar 

  54. Mlynash M, Eyngorn I, Bammer R, Moseley M, Tong DC (2005) Automated method for generating the arterial input function on perfusion-weighted MR imaging: validation in patients with stroke. AJNR Am J Neuroradiol 26(6):1479–1486

    PubMed  Google Scholar 

  55. Li X, Cai Y, Moloney B et al (2016) Relative sensitivities of DCE–MRI pharmacokinetic parameters to arterial input function (AIF) scaling. J Magn Reson 269:104–112. https://doi.org/10.1016/j.jmr.2016.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chouhan M, Bainbridge A, Atkinson D et al (2016) Estimation of contrast agent bolus arrival delays for improved reproducibility of liver DCE MRI. Phys Med Biol 61(19):6905–6918. https://doi.org/10.1088/0031-9155/61/19/6905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Parker GJ, Roberts C, Macdonald A et al (2006) Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med 56(5):993–1000. https://doi.org/10.1002/mrm.21066

    Article  PubMed  Google Scholar 

  58. Rata M, Collins DJ, Darcy J et al (2016) Assessment of repeatability and treatment response in early phase clinical trials using DCE–MRI: comparison of parametric analysis using MR- and CT-derived arterial input functions. Eur Radiol 26(7):1991–1998. https://doi.org/10.1007/s00330-015-4012-9

    Article  PubMed  Google Scholar 

  59. Ziayee F, Müller-Lutz A, Gross J (2018) Influence of arterial input function (AIF) on quantitative prostate dynamic contrast-enhanced (DCE) MRI and zonal prostate anatomy. Magn Reson Imaging 53:28–33. https://doi.org/10.1016/j.mri.2018.06.004

    Article  CAS  PubMed  Google Scholar 

  60. Ioannidis GS, Maris TG, Nikiforaki K, Karantanas A, Marias K (2019) Investigating the correlation of Ktrans with semi-quantitative MRI parameters towards more robust and reproducible perfusion imaging biomarkers in three cancer types. IEEE J Biomed Health Inf 23(5):1855–1862. https://doi.org/10.1109/JBHI.2018.2888979

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Drs. SC and GP proposed the topic of this review. Drs. PES and GP performed the literature search and initial draft. All authors contributed to the critical revision of the work and approved the final manuscript.

Corresponding author

Correspondence to Stefano Colagrande.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

The manuscript does not contain clinical studies or patient data requiring ethical committee approval.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petralia, G., Summers, P.E., Agostini, A. et al. Dynamic contrast-enhanced MRI in oncology: how we do it. Radiol med 125, 1288–1300 (2020). https://doi.org/10.1007/s11547-020-01220-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-020-01220-z

Keywords

Navigation