Skip to main content

Advertisement

Log in

Intrahepatic cholangiocarcinoma and its differential diagnosis at MRI: how radiologist should assess MR features

  • Diagnostic Imaging in Oncology
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Background

Intrahepatic cholangiocarcinoma (ICC) is the second most common type of primary hepatic malignancy. Aim of this work is to analyse the features of ICC and its differential diagnosis at MRI, assessing two categories intraparenchymal and peribiliary lesions.

Methods

The study population included 88 patients with histological diagnosis of ICCs: 61 with mass-forming type, 23 with periductal-infiltrating tumours and 4 with intraductal-growing type. As a control study groups, we identified: 86 consecutive patients with liver colorectal intrahepatic metastases (mCRC) (groups A); 35 consecutive patients with peribiliary metastases (groups B); 62 consecutive patients (groups C) with hepatocellular carcinoma (HCC); 18 consecutive patients (groups D) with combined hepatocellular cholangiocarcinoma (cHCC-CCA); and 26 consecutive patients (groups E) with hepatic hemangioma. For all lesions, magnetic resonance (MR) features were assessed according to Liver Imaging Reporting and Data System (LI-RADS) version 2018. The liver-specific gadolinium ethoxybenzyl dimeglumine—EOB (Primovist, Bayer Schering Pharma, Germany), was employed. Chi-square test was employed to analyse differences in percentage values of categorical variable, while the nonparametric Kruskal–Wallis test was used to test for statistically significant differences between the median values of the continuous variables. However, false discovery rate adjustment according to Benjamin and Hochberg for multiple testing was considered.

Results

T1- and T2-weighted signal intensity (SI), restricted diffusion, transitional phase (TP) and hepatobiliary phase (HP) aspects allowed the differentiation between study group (mass-forming ICCs) and each other control group (A, C, D, E) with statistical significance, while arterial phase (AP) appearance allowed the differentiation between study group and the control groups C and D with statistical significance and PP appearance allowed the differentiation between study group and the control groups A, C and D with statistical significance. Instead, no MR feature allowed the differentiation between study group (periductal-infiltrating type) and control group B.

Conclusion

T1 and T2 W SI, restricted diffusion, TP and HP appearance allowed the differentiation between mass-forming ICCs and mimickers with statistical significance, while AP appearance allowed the differentiation between study group and the control groups C and D with statistical significance and PP appearance allowed the differentiation between study group and the control groups A, C and D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

APHE:

Arterial phase hyperenhancement

AP:

Arterial phase

CC:

Cholangiocarcinoma

cHCC-CCA:

Combined hepatocellular cholangiocarcinoma

DWI:

Diffusion-weighted imaging

FLASH:

Fast low angle shot magnetic resonance imaging

FISP:

Fast imaging with steady-state free precession

HASTE:

Half-Fourier-acquired single-shot turbo spin echo

HCC:

Hepatocellular carcinoma

HP:

Hepatobiliary phase

Hyper:

Hyperintense

Hypo:

Hypointense

ICC:

Intrahepatic cholangiocarcinoma

IN:

Inhomogeneous

Iso:

Isointense

LI-RADS:

Liver Imaging Reporting and Data System

mCRC:

Colorectal intrahepatic metastases

MR:

Magnetic resonance

NA:

Not assessed

NPW:

Non-peripheral washout appearance

PCE:

Progressive contrast enhancement

PP:

Portal phase

ROI:

Region of interest

SPAIR:

Spectral attenuated inversion recovery

SI:

Signal intensity

TA:

Targetoid appearance

TP:

Transitional phase

VIBE:

Volumetric interpolated breath-hold examination

W:

Weighted

WA:

Washout appearance

References

  1. Cholangiocarcinoma Working Group (2020) Italian clinical practice guidelines on cholangiocarcinoma—part I: classification, diagnosis and staging. Dig Liver Dis 52(11):1282–1293. https://doi.org/10.1016/j.dld.2020.06.045

    Article  Google Scholar 

  2. Cholangiocarcinoma Working Group (2020) Italian clinical practice guidelines on cholangiocarcinoma—part II: treatment. Dig Liver Dis 52(12):1430–1442. https://doi.org/10.1016/j.dld.2020.08.030

    Article  Google Scholar 

  3. Nakanuma Y, Sato Y, Harada K, Sasaki M, Xu J, Ikeda H (2010) Pathological classification of intrahepatic cholangiocarcinoma based on a new concept. World J Hepatol 2:419–427

    Article  Google Scholar 

  4. Aishima S, Oda Y (2015) Pathogenesis and classification of intrahepatic cholangiocarcinoma: different characters of perihilar large duct type versus peripheral small duct type. J Hepatobiliary Pancreat Sci 22:94–100

    Article  Google Scholar 

  5. Nakanuma Y, Kakuda Y (2015) Pathologic classification of cholangiocarcinoma: new concepts. Best Pract Res Clin Gastroenterol 29:277–293

    Article  Google Scholar 

  6. Seo N, Kim DY, Choi JY (2017) Cross-sectional imaging of intrahepatic cholangiocarcinoma: development, growth, spread, and prognosis. AJR Am J Roentgenol 209(2):W64–W75. https://doi.org/10.2214/AJR.16.16923

    Article  PubMed  Google Scholar 

  7. Granata V, Fusco R, Setola SV, Avallone A, Palaia R, Grassi R, Izzo F, Petrillo A (2020) Radiological assessment of secondary biliary tree lesions: an update. J Int Med Res 48(6):300060519850398. https://doi.org/10.1177/0300060519850398

    Article  PubMed  Google Scholar 

  8. Granata V, Fusco R, Catalano O, Avallone A, Palaia R, Botti G, Tatangelo F, Granata F, Cascella M, Izzo F, Petrillo A (2017) Diagnostic accuracy of magnetic resonance, computed tomography and contrast enhanced ultrasound in radiological multimodality assessment of peribiliary liver metastases. PLoS ONE 12(6):e0179951. https://doi.org/10.1371/journal.pone.0179951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Granata V, Fusco R, Catalano O, Avallone A, Leongito M, Izzo F, Petrillo A (2017) Peribiliary liver metastases MR findings. Med Oncol 34(7):124. https://doi.org/10.1007/s12032-017-0981-7

    Article  PubMed  Google Scholar 

  10. American College of Radiology (2018) CT/MRI LI-RADS version 2018. https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/LI-RADS/CT-MRI-LI-RADS-v2018. Accessed 1 Nov 2019

  11. Bosman FT, Carneiro F, Hruban RH, Theise ND (2010) WHO classification of tumours of the digestive system. World Health Organization, Geneva

    Google Scholar 

  12. Inchingolo R, Maino C, Gatti M, Tricarico E, Nardella M, Grazioli L, Sironi S, Ippolito D, Faletti R (2020) Gadoxetic acid magnetic-enhanced resonance imaging in the diagnosis of cholangiocarcinoma. World J Gastroenterol 26(29):4261–4271. https://doi.org/10.3748/wjg.v26.i29.4261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maetani Y, Itoh K, Watanabe C et al (2001) MR imaging of intrahepatic cholangiocarcinoma with pathologic correlation. AJR 176:1499–1507

    Article  CAS  Google Scholar 

  14. Shin N, Choi JA, Choi JM, Cho ES, Kim JH, Chung JJ, Yu JS (2020) Sclerotic changes of cavernous hemangioma in the cirrhotic liver: long-term follow-up using dynamic contrast-enhanced computed tomography. Radiol Med 125(12):1225–1232. https://doi.org/10.1007/s11547-020-01221-y (Epub 2020 May 15 PMID: 32415477)

    Article  PubMed  Google Scholar 

  15. Jeong HT, Kim MJ, Chung YE, Choi JY, Park YN, Kim KW (2013) Gadoxetate disodium-enhanced MRI of mass-forming intrahepatic cholangiocarcinomas: imaging-histologic correlation. AJR 201:W603–W611

    Article  Google Scholar 

  16. Granata V, Fusco R, Venanzio Setola S, Mattace Raso M, Avallone A, De Stefano A, Nasti G, Palaia R, Delrio P, Petrillo A, Izzo F (2019) Liver radiologic findings of chemotherapy-induced toxicity in liver colorectal metastases patients. Eur Rev Med Pharmacol Sci 23(22):9697–9706. https://doi.org/10.26355/eurrev_201911_19531

    Article  CAS  PubMed  Google Scholar 

  17. Granata V, Fusco R, Avallone A, Catalano O, Filice F, Leongito M, Palaia R, Izzo F, Petrillo A (2017) Major and ancillary magnetic resonance features of LI-RADS to assess HCC: an overview and update. Infect Agent Cancer 28(12):23. https://doi.org/10.1186/s13027-017-0132-y

    Article  Google Scholar 

  18. Granata V, Cascella M, Fusco R, dell’Aprovitola N, Catalano O, Filice S, Schiavone V, Izzo F, Cuomo A, Petrillo A (2016) Immediate adverse reactions to gadolinium-based MR contrast media: a retrospective analysis on 10,608 examinations. Biomed Res Int 2016:3918292. https://doi.org/10.1155/2016/3918292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kang Y, Lee JM, Kim SH, Han JK, Choi BI (2012) Intrahepatic mass-forming cholangiocarcinoma: enhancement patterns on gadoxetic acid-enhanced MR images. Radiology 264:751–760

    Article  Google Scholar 

  20. Esposito A, Buscarino V, Raciti D, Casiraghi E, Manini M, Biondetti P, Forzenigo L (2020) Characterization of liver nodules in patients with chronic liver disease by MRI: performance of the Liver Imaging Reporting and Data System (LI-RADS vol 2018) scale and its comparison with the Likert scale. Radiol Med 125:15–23

    Article  Google Scholar 

  21. Granata V, Catalano O, Fusco R, Tatangelo F, Rega D, Nasti G, Avallone A, Piccirillo M, Izzo F, Petrillo A (2015) The target sign in colorectal liver metastases: an atypical Gd-EOB-DTPA “uptake” on the hepatobiliary phase of MR imaging. Abdom Imaging 40(7):2364–2371. https://doi.org/10.1007/s00261-015-0488-7

    Article  PubMed  Google Scholar 

  22. Granata V, Fusco R, Setola SV, Picone C, Vallone P, Belli A, Incollingo P, Albino V, Tatangelo F, Izzo F, Petrillo A (2019) Microvascular invasion and grading in hepatocellular carcinoma: correlation with major and ancillary features according to LIRADS. Abdom Radiol (N Y) 44(8):2788–2800. https://doi.org/10.1007/s00261-019-02056-6

    Article  Google Scholar 

  23. Granata V, Fusco R, Avallone A, Filice F, Tatangelo F, Piccirillo M, Grassi R, Izzo F, Petrillo A (2017) Critical analysis of the major and ancillary imaging features of LI-RADS on 127 proven HCCs evaluated with functional and morphological MRI: Lights and shadows. Oncotarget 8(31):51224–51237. https://doi.org/10.18632/oncotarget.17227

    Article  PubMed  PubMed Central  Google Scholar 

  24. Granata V, Fusco R, Maio F, Avallone A, Nasti G, Palaia R, Albino V, Grassi R, Izzo F, Petrillo A (2019) Qualitative assessment of EOB-GD-DTPA and Gd-BT-DO3A MR contrast studies in HCC patients and colorectal liver metastases. Infect Agent Cancer 27(14):40. https://doi.org/10.1186/s13027-019-0264-3

    Article  CAS  Google Scholar 

  25. Granata V, Fusco R, Venanzio Setola S, Sandomenico F, Luisa Barretta M, Belli A, Palaia R, Tatangelo F, Grassi R, Izzo F, Petrillo A (2020) Major and ancillary features according to LI-RADS in the assessment of combined hepatocellular-cholangiocarcinoma. Radiol Oncol 54(2):149–158. https://doi.org/10.2478/raon-2020-0029

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lee HS, Kim MJ, An C (2018) How to utilize LR-M features of the LI-RADS to improve the diagnosis of combined hepatocellular-cholangiocarcinoma on gadoxetate-enhanced MRI? Eur Radiol. https://doi.org/10.1007/s00330-018-5893-1

    Article  PubMed  PubMed Central  Google Scholar 

  27. Potretzke TA, Tan BR, Doyle MB, Brunt EM, Heiken JP, Fowler KJ (2016) Imaging features of biphenotypic primary liver carcinoma (hepatocholangiocarcinoma) and the potential to mimic hepato- cellular carcinoma: LI-RADS analysis of CT and MRI features in 61 cases. AJR Am J Roentgenol 207:25–31

    Article  Google Scholar 

  28. Park HJ, Kim YK, Park MJ, Lee WJ (2013) Small intra- hepatic mass-forming cholangiocarcinoma: target sign on diffusion-weighted imaging for differentiation from hepatocellular carcinoma. Abdom Imaging 38:793–801

    Article  Google Scholar 

  29. Park MJ, Kim YK, Park HJ, Hwang J, Lee WJ (2013) Scirrhous hepatocellular carcinoma on gadoxetic acid-enhanced magnetic resonance imaging and diffusion-weighted imaging: emphasis on the differentiation of intrahepatic cholangiocarcinoma. J Comput Assist Tomogr 37:872–881

    Article  Google Scholar 

  30. Mathew RP, Sam M, Raubenheimer M, Patel V, Low G (2020) Hepatic hemangiomas: the various imaging avatars and its mimickers. Radiol Med 125(9):801–815. https://doi.org/10.1007/s11547-020-01185-z

    Article  PubMed  Google Scholar 

  31. Gabelloni M, Di Nasso M, Morganti R, Faggioni L, Masi G, Falcone A, Neri E (2020) Application of the ESR iGuide clinical decision support system to the imaging pathway of patients with hepatocellular carcinoma and cholangiocarcinoma: preliminary findings. Radiol Med 125(6):531–537. https://doi.org/10.1007/s11547-020-01142-w

    Article  PubMed  Google Scholar 

  32. Bozkurt M, Eldem G, Bozbulut UB, Bozkurt MF, Kılıçkap S, Peynircioğlu B, Çil B, Lay Ergün E, Volkan-Salanci B (2020) Factors affecting the response to Y-90 microsphere therapy in the cholangiocarcinoma patients. Radiol Med. https://doi.org/10.1007/s11547-020-01240-9

    Article  PubMed  Google Scholar 

  33. Gatti M, Calandri M, Bergamasco L, Darvizeh F, Grazioli L, Inchingolo R, Ippolito D, Rousset S, Veltri A, Fonio P et al (2020) Characterization of the arterial enhancement pattern of focal liver lesions by multiple arterial phase magnetic resonance imaging: Comparison between hepatocellular carcinoma and focal nodular hyperplasia. Radiol Med 125:348–355

    Article  Google Scholar 

  34. Orlacchio A, Chegai F, Roma S, Merolla S, Bosa A, Francioso S (2020) Degradable starch microspheres transarterial chemoembolization (DSMs-TACE) in patients with unresectable hepatocellular carcinoma (HCC): long-term results from a single-center 137-patient cohort prospective study. Radiol Med 125:98–106

    Article  Google Scholar 

  35. Barabino M, Gurgitano M, Fochesato C, Angileri SA, Franceschelli G, Santambrogio R, Mariani NM, Opocher E, Carrafiello G (2021) LI-RADS to categorize liver nodules in patients at risk of HCC: tool or a gadget in daily practice? Radiol Med 126(1):5–13. https://doi.org/10.1007/s11547-020-01225-8 (Epub 2020 May 26 PMID: 32458272)

    Article  PubMed  Google Scholar 

  36. Schicchi N, Fogante M, Palumbo P, Agliata G, Esposto Pirani P, Di Cesare E, Giovagnoni A (2020) The sub-millisievert era in CTCA: the technical basis of the new radiation dose approach. Radiol Med 125(11):1024–1039. https://doi.org/10.1007/s11547-020-01280-1 (Epub 2020 Sep 15 PMID: 32930945)

    Article  PubMed  Google Scholar 

  37. Bottari A, Silipigni S, Carerj ML, Cattafi A, Maimone S, Marino MA, Mazziotti S, Pitrone A, Squadrito G, Ascenti G (2020) Dual-source dual-energy CT in the evaluation of hepatic fractional extracellular space in cirrhosis. Radiol Med 125:7–14. https://doi.org/10.1007/s11547-019-01089-7

    Article  PubMed  Google Scholar 

  38. Crimi F, Capelli G, Spolverato G, Bao QR, Florio A, Milite Rossi S, Cecchin D, Albertoni L, Campi C, Pucciarelli S et al (2020) MRI T2-weighted sequences-based texture analysis (TA) as a predictor of response to neoadjuvant chemo-radiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC). Radiol Med 125:1216–1224. https://doi.org/10.1007/s11547-020-01215-w

    Article  PubMed  Google Scholar 

  39. Danti G, Berti V, Abenavoli E, Briganti V, Linguanti F, Mungai F, Pradella S, Miele V (2020) Diagnostic imaging of typical lung carcinoids: relationship between MDCT, (111)In-Octreoscan and (18)F-FDG-PET imaging features with Ki-67 index. Radiol Med 125:715–729. https://doi.org/10.1007/s11547-020-01172-4

    Article  PubMed  Google Scholar 

  40. Koc A, Sezgin OS, Kayipmaz S (2020) Comparing different planimetric methods on volumetric estimations by using cone beam computed tomography. Radiol Med 125(4):398–405. https://doi.org/10.1007/s11547-019-01131-8

    Article  PubMed  Google Scholar 

  41. Neri E, Miele V, Coppola F, Grassi R (2020) Use of CT and artificial intelligence in suspected or COVID-19 positive patients: statement of the Italian Society of Medical and Interventional Radiology. Radiol Med 125:505–508

    Article  Google Scholar 

  42. Farchione A, Larici AR, Masciocchi C, Cicchetti G, Congedo MT, Franchi P, Gatta R, Lo Cicero S, Valentini V, Bonomo L et al (2020) Exploring technical issues in personalized medicine: NSCLC survival prediction by quantitative image analysis-usefulness of density correction of volumetric CT data. Radiol Med 125:625–635. https://doi.org/10.1007/s11547-020-01157-3

    Article  PubMed  Google Scholar 

  43. Fornell-Perez R, Vivas-Escalona V, Aranda-Sanchez J, Gonzalez-Dominguez MC, Rubio-Garcia J, Aleman-Flores P, Lozano-Rodriguez A, Porcel-de-Peralta G, Loro-Ferrer JF (2020) Primary and post-chemoradiotherapy MRI detection of extramural venous invasion in rectal cancer: the role of diffusion-weighted imaging. Radiol Med 125:522–530. https://doi.org/10.1007/s11547-020-01137-7

    Article  PubMed  Google Scholar 

  44. Caruso D, Polici M, Zerunian M, Pucciarelli F, Polidori T, Guido G, Rucci C, Bracci B, Muscogiuri E, De Dominicis C, Laghi A (2021) Quantitative Chest CT analysis in discriminating COVID-19 from non-COVID-19 patients. Radiol Med 126(2):243–249

    Article  Google Scholar 

  45. Grassi R, Belfiore MP, Montanelli A, Patelli G, Urraro F, Giacobbe G, Fusco R, Granata V, Petrillo A, Sacco P, Mazzei MA, Feragalli B, Reginelli A, Cappabianca S (2021) COVID-19 pneumonia: computer-aided quantification of healthy lung parenchyma, emphysema, ground glass and consolidation on chest computed tomography (CT). Radiol Med 126(4):553–560

    Article  Google Scholar 

  46. van Assen M, Muscogiuri G, Caruso D, Lee SJ, Laghi A, De Cecco CN (2020) Artificial intelligence in cardiac radiology. Radiol Med 125(11):1186–1199. https://doi.org/10.1007/s11547-020-01277-w

    Article  PubMed  Google Scholar 

  47. Zhang L, Kang L, Li G, Zhang X, Ren J, Shi Z, Li J, Yu S (2020) Computed tomography-based radiomics model for discriminating the risk stratification of gastrointestinal stromal tumors. Radiol Med 125(5):465–473. https://doi.org/10.1007/s11547-020-01138-6

    Article  PubMed  Google Scholar 

  48. Hu HT, Shan QY, Chen SL, Li B, Feng ST, Xu EJ, Li X, Long JY, Xie XY, Lu MD, Kuang M, Shen JX, Wang W (2020) CT-based radiomics for preoperative prediction of early recurrent hepatocellular carcinoma: technical reproducibility of acquisition and scanners. Radiol Med 125(8):697–705. https://doi.org/10.1007/s11547-020-01174-2

    Article  PubMed  Google Scholar 

  49. D’Agostino V, Caranci F, Negro A, Piscitelli V, Tuccillo B, Fasano F, Sirabella G, Marano I, Granata V, Grassi R, Pupo D, Grassi R (2021) A rare case of cerebral venous thrombosis and disseminated intravascular coagulation temporally associated to the COVID-19 vaccine administration. j pers med 11(4):285. https://doi.org/10.3390/jpm11040285.PMID:33917902;PMCID:PMC8068274

    Article  PubMed  PubMed Central  Google Scholar 

  50. La Seta F, Buccellato A, Tesè L, Biscaldi E, Rollandi GA, Barbiera F, Cappabianca S, Di Mizio R, Grassi R (2006) Multidetector-row CT enteroclysis: indications and clinical applications. Radiol Med 111(2):141–158. https://doi.org/10.1007/s11547-006-0016-5 (English. Italian PMID: 16671373)

    Article  PubMed  Google Scholar 

  51. Cantisani V, Iannetti G, Miele V, Grassi R, Karaboue M, Cesarano E, Vimercati F, Calliada F (2021) Addendum to the sonographic medical act. J Ultrasoun 24(3):229–230. https://doi.org/10.1007/s40477-021-00603-w (Epub 2021 Jul 9. PMID: 34241829; PMCID: PMC8363678)

    Article  Google Scholar 

  52. Granata V, Fusco R, Costa M, Picone C, Cozzi D, Moroni C, La Casella GV, Montanino A, Monti R, Mazzoni F, Grassi R, Malagnino VG, Cappabianca S, Grassi R, Miele V, Petrillo A (2021) Preliminary report on computed tomography radiomics features as biomarkers to immunotherapy selection in lung adenocarcinoma patients. Cancers (Basel) 13(16):3992. https://doi.org/10.3390/cancers13163992.PMID:34439148;PMCID:PMC8393664

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nardone V, Boldrini L, Grassi R, Franceschini D, Morelli I, Becherini C, Loi M, Greto D, Desideri I (2021) Radiomics in the setting of neoadjuvant radiotherapy: a new approach for tailored treatment. Cancers (Basel) 13(14):3590. https://doi.org/10.3390/cancers13143590.PMID:34298803;PMCID:PMC8303203

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fiorini F, Granata A, Battaglia Y, Karaboue MAA (2019) Talking about medicine through mass media. G Ital Nefrol 36(1):1 (Italian, PMID: 30758148)

    Google Scholar 

  55. Gundogdu E, Emekli E, Kebapci M (2020) Evaluation of relationships between the final Gleason score, PI-RADS v2 score, ADC value, PSA level, and tumor diameter in patients that underwent radical prostatectomy due to prostate cancer. Radiol Med 125:827–837. https://doi.org/10.1007/s11547-020-01183-1

    Article  PubMed  Google Scholar 

  56. Han JH, Ahn JH, Kim JS (2020) Magnetic resonance elastography for evaluation of renal parenchyma in chronic kidney disease: a pilot study. Radiol Med 125:1209–1215. https://doi.org/10.1007/s11547-020-01210-1

    Article  PubMed  Google Scholar 

  57. Higashi M, Tanabe M, Okada M, Furukawa M, Iida E, Ito K (2020) Influence of fat deposition on T1 mapping of the pancreas: evaluation by dual-flip-angle MR imaging with and without fat suppression. Radiol Med 125:1–6. https://doi.org/10.1007/s11547-019-01087-9

    Article  PubMed  Google Scholar 

  58. Hu HT, Shan QY, Chen SL, Li B, Feng ST, Xu EJ, Li X, Long JY, Xie XY, Lu MD et al (2020) CT-based radiomics for preoperative prediction of early recurrent hepatocellular carcinoma: technical reproducibility of acquisition and scanners. Radiol Med 125:697–705. https://doi.org/10.1007/s11547-020-01174-2

    Article  PubMed  Google Scholar 

  59. Kirienko M, Ninatti G, Cozzi L, Voulaz E, Gennaro N, Barajon I, Ricci F, Carlo-Stella C, Zucali P, Sollini M et al (2020) Computed tomography (CT)-derived radiomic features differentiate prevascular mediastinum masses as thymic neoplasms versus lymphomas. Radiol Med 125:951–960. https://doi.org/10.1007/s11547-020-01188-w

    Article  PubMed  Google Scholar 

  60. Lian S, Zhang C, Chi J, Huang Y, Shi F, Xie C (2020) Differentiation between nasopharyngeal carcinoma and lymphoma at the primary site using whole-tumor histogram analysis of apparent diffusion coefficient maps. Radiol Med 125:647–653. https://doi.org/10.1007/s11547-020-01152-8

    Article  PubMed  Google Scholar 

  61. Liguori C, Farina D, Vaccher F, Ferrandino G, Bellini D, Carbone I (2020) Myocarditis: imaging up to date. Radiol Med 125:1124–1134. https://doi.org/10.1007/s11547-020-01279-8

    Article  PubMed  PubMed Central  Google Scholar 

  62. Maddalo M, Buglione M, Pasinetti N, Triggiani L, Costa L, Magrini SM, Murphy BA (2020) The linguistic validation process of the Vanderbilt Head and Neck Symptom Survey—Italian Version (VHNSS-IT). Radiol Med 125:228–235. https://doi.org/10.1007/s11547-019-01105-w

    Article  PubMed  Google Scholar 

  63. Maddalo M, Buglione M, Pasinetti N, Triggiani L, Pegurri L, Magli A, Magrini SM, Murphy BA (2020) A pilot study on the Vanderbilt head and neck symptom survey Italian version (VHNSS-IT) to test its feasibility and utility in routine clinical practice. Radiol Med 125:423–431. https://doi.org/10.1007/s11547-019-01125-6

    Article  PubMed  Google Scholar 

  64. Nazari M, Shiri I, Hajianfar G, Oveisi N, Abdollahi H, Deevband MR, Oveisi M, Zaidi H (2020) Noninvasive Fuhrman grading of clear cell renal cell carcinoma using computed tomography radiomic features and machine learning. Radiol Med 125:754–762. https://doi.org/10.1007/s11547-020-01169-z

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Alessandra Trocino, librarian at the National Cancer Institute of Naples, Italy. Moreover, for the collaboration, authors are grateful to Paolo Pariante and Paola Gargiulo (research support) and Dr Ivano Rossi (TSRM) of Radiology Division, “Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli,” Naples, I-80131, Italy

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Fusco.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to be disclosed. The authors confirm that the article is not under consideration for publication elsewhere. Each author has participated sufficiently to take public responsibility for the manuscript content.

Research involving human participants and/or animals

Institutional review board approval was obtained for this retrospective study.

Informed consent

Informed consent was waived for the retrospective nature of the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Granata, V., Grassi, R., Fusco, R. et al. Intrahepatic cholangiocarcinoma and its differential diagnosis at MRI: how radiologist should assess MR features. Radiol med 126, 1584–1600 (2021). https://doi.org/10.1007/s11547-021-01428-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-021-01428-7

Keywords

Navigation