Skip to main content
Log in

Quantum diffusion of the random Schrödinger evolution in the scaling limit

  • Published:
Acta Mathematica

Abstract

We consider random Schrödinger equations on R d for d ≽ 3 with a homogeneous Anderson–Poisson type random potential. Denote by λ the coupling constant and \(\psi_t\) the solution with initial data \(\psi_0\). The space and time variables scale as \( x\sim\lambda ^{{ - 2 - \varkappa/2}} {\text{ and }}t\sim\lambda ^{{ - 2 - \varkappa}} {\text{ with }}0 < \varkappa < \varkappa_{0} {\left( d \right)} \). We prove that, in the limit λ → 0, the expectation of the Wigner distribution of \(\psi_t\) converges weakly to the solution of a heat equation in the space variable x for arbitrary L 2 initial data.

The proof is based on analyzing the phase cancellations of multiple scatterings on the random potential by expanding the propagator into a sum of Feynman graphs. In this paper we consider the non-recollision graphs and prove that the amplitude of the non-ladder diagrams is smaller than their “naive size” by an extra λc factor per non-(anti)ladder vertex for some c > 0. This is the first rigorous result showing that the improvement over the naive estimates on the Feynman graphs grows as a power of the small parameter with the exponent depending linearly on the number of vertices. This estimate allows us to prove the convergence of the perturbation series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M. & Molchanov, S., Localization at large disorder and at extreme energies: an elementary derivation. Comm. Math. Phys., 157 (1993), 245–278.

    Article  MathSciNet  MATH  Google Scholar 

  2. Aizenman, M., Sims, R. & Warzel, S., Absolutely continuous spectra of quantum tree graphs with weak disorder. Comm. Math. Phys., 264 (2006), 371–389.

    Article  MathSciNet  Google Scholar 

  3. Anderson, P., Absences of diffusion in certain random lattices. Phys. Rev., 109 (1958), 1492–1505.

    Article  Google Scholar 

  4. Boldrighini, C., Bunimovich, L. A. & Sinaĭ, Y. G., On the Boltzmann equation for the Lorentz gas. J. Stat. Phys., 32 (1983), 477–501.

    Article  MATH  Google Scholar 

  5. Bourgain, J., Random lattice Schrödinger operators with decaying potential: some higher dimensional phenomena, in Geometric Aspects of Functional Analysis, Lecture Notes in Math., 1807, pp. 70–98. Springer, Berlin–Heidelberg, 2003.

    Google Scholar 

  6. Brown, R., A brief account of microscopical observations made in the months of June, July, and August 1827, on the particles contained in the pollen of plants and on the general existence of active molecules in organic and inorganic bodies. Philosophical Magazine (2), 4 (1828), 161–173.

    Google Scholar 

  7. — Additional remarks on active molecules. Philosophical Magazine (2), 6 (1829), 161–166.

    Google Scholar 

  8. Brydges, D., Dimock, J. & Hurd, T. R., The short distance behavior of (ϕ 4)3. Comm. Math. Phys., 172 (1995), 143–186.

    Article  MathSciNet  MATH  Google Scholar 

  9. Brydges, D. & Yau, H.-T., Grad ϕ perturbations of massless Gaussian fields. Comm. Math. Phys., 129 (1990), 351–392.

    Article  MathSciNet  MATH  Google Scholar 

  10. Bunimovich, L. A. & Sinaĭ, Y.G., Statistical properties of Lorentz gas with periodic configuration of scatterers. Comm. Math. Phys., 78 (1980/81), 479–497.

    Article  MathSciNet  Google Scholar 

  11. Chen, T., Localization lengths and Boltzmann limit for the Anderson model at small disorders in dimension 3. J. Stat. Phys., 120 (2005), 279–337.

    Article  MathSciNet  MATH  Google Scholar 

  12. Denisov, S.A., Absolutely continuous spectrum of multidimensional Schrödinger operator. Int. Math. Res. Not., 74 (2004), 3963–3982.

    Article  MathSciNet  Google Scholar 

  13. Dürr, D., Goldstein, S. & Lebowitz, J. L., A mechanical model of Brownian motion. Comm. Math. Phys., 78 (1980/81), 507–530.

    Article  MathSciNet  Google Scholar 

  14. — Asymptotic motion of a classical particle in a random potential in two dimensions: Landau model. Comm. Math. Phys., 113 (1987), 209–230.

    Article  MathSciNet  MATH  Google Scholar 

  15. Einstein, A., Zur Theorie der Brownschen Bewegung. Ann. der Physik, 19 (1906), 371–381.

    Article  Google Scholar 

  16. Erdős, L., Linear Boltzmann equation as the long time dynamics of an electron weakly coupled to a phonon field. J. Stat. Phys., 107 (2002), 1043–1127.

    Article  Google Scholar 

  17. Erdős, L., Salmhofer, M. & Yau, H.-T., Towards the quantum Brownian motion, in Mathematical Physics of Quantum Mechanics, Lecture Notes in Physics, 690, pp. 233–257. Springer, Berlin–Heidelberg, 2006.

    Google Scholar 

  18. — Quantum diffusion for the Anderson model in the scaling limit. Ann. Henri Poincaré, 8 (2007), 621–685.

    Article  Google Scholar 

  19. — Quantum diffusion of the random Schrödinger evolution in the scaling limit. II. The recollision diagrams. Comm. Math. Phys., 271 (2007), 1–53.

    Article  MathSciNet  Google Scholar 

  20. Erdős, L. & Yau, H.-T., Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation. Comm. Pure Appl. Math., 53 (2000), 667–735.

    Article  MathSciNet  Google Scholar 

  21. Feldman, J., Knörrer, H. & Trubowitz, E., A representation for fermionic correlation functions. Comm. Math. Phys., 195 (1998), 465–493.

    Article  MathSciNet  MATH  Google Scholar 

  22. — Convergence of perturbation expansions in Fermionic models. II. Overlapping loops. Comm. Math. Phys., 247 (2004), 243–319.

    Article  MathSciNet  MATH  Google Scholar 

  23. Feldman, J., Magnen, J., Rivasseau, V. & Sénéor, R., Bounds on completely convergent Euclidean Feynman graphs. Comm. Math. Phys., 98 (1985), 273–288.

    Article  MathSciNet  Google Scholar 

  24. — Bounds on renormalized Feynman graphs. Comm. Math. Phys., 100 (1985), 23–55.

    Article  MathSciNet  Google Scholar 

  25. — A renormalizable field theory: the massive Gross–Neveu model in two dimensions. Comm. Math. Phys., 103 (1986), 67–103.

    Article  MathSciNet  MATH  Google Scholar 

  26. — Construction and Borel summability of infrared Φ4 4 by a phase space expansion. Comm. Math. Phys., 109 (1987), 437–480.

    Article  MathSciNet  Google Scholar 

  27. Feldman, J., Salmhofer, M. & Trubowitz, E., Perturbation theory around nonnested Fermi surfaces. I. Keeping the Fermi surface fixed. J. Stat. Phys., 84 (1996), 1209–1336.

    Article  MathSciNet  MATH  Google Scholar 

  28. — Regularity of interacting nonspherical Fermi surfaces: the full self-energy. Comm. Pure Appl. Math., 52 (1999), 273–324.

    Article  MathSciNet  Google Scholar 

  29. Froese, R., Hasler, D. & Spitzer, W., Transfer matrices, hyperbolic geometry and absolutely continuous spectrum for some discrete Schrödinger operators on graphs. J. Funct. Anal., 230 (2006), 184–221.

    MathSciNet  MATH  Google Scholar 

  30. Fröhlich, J. & Spencer, T., Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Comm. Math. Phys., 88 (1983), 151–184.

    Article  MathSciNet  MATH  Google Scholar 

  31. Gallavotti, G., Rigorous theory of the Boltzmann equation in the Lorentz model. Nota interna n. 358, Physics Department, Università “La Sapienza”, Roma, (1972), pp. 1–9. mp arc@math.utexas.edu, #93–304.

  32. Gawędzki, K. & Kupiainen, A., Gross–Neveu model through convergent perturbation expansions. Comm. Math. Phys., 102 (1985), 1–30.

    Article  MathSciNet  Google Scholar 

  33. — Massless lattice φ 4 4 theory: rigorous control of a renormalizable asymptotically free model. Comm. Math. Phys., 99 (1985), 197–252.

    Article  MathSciNet  Google Scholar 

  34. Gol′dsheĭd, I. J., Molchanov, S.A. & Pastur, L.A., A random homogeneous Schrödinger operator has a pure point spectrum. Funktsional. Anal. i Prilozhen., 11 (1977), 1–10 (Russian); English translation in Funct. Anal. Appl., 11 (1977), 1–8.

    Article  Google Scholar 

  35. Ho, T.G., Landau, L. J. & Wilkins, A. J., On the weak coupling limit for a Fermi gas in a random potential. Rev. Math. Phys., 5 (1993), 209–298.

    Article  MathSciNet  MATH  Google Scholar 

  36. Kesten, H. & Papanicolaou, G. C., A limit theorem for stochastic acceleration. Comm. Math. Phys., 78 (1980), 19–63.

    Article  MathSciNet  MATH  Google Scholar 

  37. Kirsch, W. & Martinelli, F., On the essential selfadjointness of stochastic Schrödinger operators. Duke Math. J., 50 (1983), 1255–1260.

    Article  MathSciNet  MATH  Google Scholar 

  38. Klein, A., Absolutely continuous spectrum in the Anderson model on the Bethe lattice. Math. Res. Lett., 1 (1994), 399–407.

    MathSciNet  MATH  Google Scholar 

  39. Komorowski, T. & Ryzhik, L., Diffusion in a weakly random Hamiltonian flow. Comm. Math. Phys., 263 (2006), 277–323.

    Article  MathSciNet  MATH  Google Scholar 

  40. Lanford, O. E., On a derivation of the Boltzmann equation, in International Conference on Dynamical Systems in Mathematical Physics (Rennes, 1975), Astérisque, 40, pp. 117–137. Soc. Math. France, Paris, 1976.

    Google Scholar 

  41. Lee, P. A. & Ramakrishnan, T. V., Disordered electronic systems. Rev. Mod. Phys., 57 (1985), 287–337.

    Article  Google Scholar 

  42. Lukkarinen, J. & Spohn, H., Kinetic limit for wave propagation in a random medium. Arch. Ration. Mech. Anal., 183 (2007), 93–162.

    Article  MathSciNet  MATH  Google Scholar 

  43. Perrin, J.B., Mouvement brownien et réalité moléculaire. Annales de chimie et de physiqe, VIII 18 (1909), 5–114.

    Google Scholar 

  44. Rodnianski, I. & Schlag, W., Classical and quantum scattering for a class of long range random potentials. Int. Math. Res. Not., 5 (2003), 243–300.

    Article  MathSciNet  Google Scholar 

  45. Salmhofer, M. & Wieczerkowski, C., Positivity and convergence in fermionic quantum field theory. J. Stat. Phys., 99 (2000), 557–586.

    Article  MathSciNet  MATH  Google Scholar 

  46. Schlag, W., Shubin, C. & Wolff, T., Frequency concentration and location lengths for the Anderson model at small disorders. J. Anal. Math., 88 (2002), 173–220.

    Article  MathSciNet  MATH  Google Scholar 

  47. Seiler, E., Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics. Lecture Notes in Physics, 159. Springer, Berlin–Heidelberg, 1982.

  48. Spohn, H., Derivation of the transport equation for electrons moving through random impurities. J. Stat. Phys., 17 (1977), 385–412.

    Article  MathSciNet  Google Scholar 

  49. — The Lorentz process converges to a random flight process. Comm. Math. Phys., 60 (1978), 277–290.

    Article  MathSciNet  MATH  Google Scholar 

  50. Vollhardt, D. & Wölfle, P., Diagrammatic, self-consistent treatment of the Anderson localization problem in d≤2 dimensions. Phys. Rev. B, 22 (1980), 4666–4679.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Erdős.

Additional information

The first auhor was partially supported by NSF grant DMS-0307295 and MacArthur Fellowship. The third author was partially supported by NSF grant DMS-0200235 and EU-IHP Network “Analysis and Quantum” HPRN-CT-2002-0027.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erdős, L., Salmhofer, M. & Yau, HT. Quantum diffusion of the random Schrödinger evolution in the scaling limit. Acta Math 200, 211–277 (2008). https://doi.org/10.1007/s11511-008-0027-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-008-0027-2

2000 Math. Subject Classification

Navigation