Skip to main content
Log in

The Lorentz process converges to a random flight process

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The Lorentz process is the stochastic process defined by a particle moving, according to Newton's law of motion, through static scatterers distributed according to some probability measure in space. We consider the Boltzmann-Grad limit: The density of scatterers increases to infinity and at the same time the diameter of the scatterers decreases to zero in such a way that the mean free path of the particle is kept constant. We show that the Lorentz process converges in the weak*-topology of regular Borel measures on the paths space to some stochastic process. The limit process is Markovian if and only if the rescaled density of scatterers converges in probability to its mean. In that case the limit process is a (spatially inhomogeneous) random flight process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lorentz, H. A.: Le mouvement des électrons dans les métaux. Arch. Néerl.10, 336 (1905); in collected papers Vol. 3, p. 180

    Google Scholar 

  2. Bruin, C.: Phys. Rev. Letters29, 1670 (1972)

    Google Scholar 

  3. Gallavotti, G.: Phys. Rev.185, 308 (1969)

    Google Scholar 

  4. Gallavotti, G.: Rigorous theory of the Boltzmann equation in the Lorentz gas. Nota Interna No. 358, Istituto di Fisica, Universita di Roma (1972)

  5. Lanford III, O. E.: Time evolution of large classical systems. In: Dynamical systems (ed. J. Moser). Lecture notes in physics, Vol. 38. Berlin-Heidelberg-New York: Springer 1974

    Google Scholar 

  6. King, F.: BBGKY hierarchy for positive potentials. Ph.D. thesis, Department of Mathematics, University of California, Berkeley (1975)

    Google Scholar 

  7. Ruelle, D.: Statistical mechanics. New York: Benjamin 1969

    Google Scholar 

  8. Gallavotti, G., Lanford, III, O. E., Lebowitz, J. L.: J. Math. Phys.11, 2898 (1970)

    Google Scholar 

  9. Nelson, E.: Ann. Math.69, 630 (1959)

    Google Scholar 

  10. Papanicalaou, G. C.: Bull. AMS81, 330 (1975)

    Google Scholar 

  11. Lanford III, O. E.: Commun. math. Phys.11, 257 (1969)

    Google Scholar 

  12. Il'in, A. M., Khas'minskii, R. Z.: Theor. Prob. Appl.9, 421 (1964)

    Google Scholar 

  13. Spitzer, F.: J. Math. Mech.18, 973 (1969)

    Google Scholar 

  14. Jespen, D. W.: J. Math. Phys.6, 405 (1965)

    Google Scholar 

  15. Harris, T. E.: J. Appl. Prob.2, 322 (1965)

    Google Scholar 

  16. Szatzschneider, W.: A more deterministic version of Harris-Spitzer's “random constant velocity” model for infinite systems of particles. Probability Winter School, Karpacz. Lecture notes in mathematics, Vol. 472. Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  17. Major P., Szasz, D.: On the effect of collisons on the motion of an atom in ℝ1. Preprint (1977)

  18. Holley, R.: Trans. AMS144, 523 (1969)

    Google Scholar 

  19. Hennion, G.: Z. Wahrscheinlichkeitstheorie verw. Gebiete25, 123 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. L. Lebowitz

On leave of absence of Fachbereich Physik der Universität München. Work supported by a DFG fellowship

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spohn, H. The Lorentz process converges to a random flight process. Commun.Math. Phys. 60, 277–290 (1978). https://doi.org/10.1007/BF01612893

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01612893

Keywords

Navigation