Skip to main content
Log in

Absolutely Continuous Spectra of Quantum Tree Graphs with Weak Disorder

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the Laplacian on a rooted metric tree graph with branching number K≥2 and random edge lengths given by independent and identically distributed bounded variables. Our main result is the stability of the absolutely continuous spectrum for weak disorder. A useful tool in the discussion is a function which expresses a directional transmission amplitude to infinity and forms a generalization of the Weyl-Titchmarsh function to trees. The proof of the main result rests on upper bounds on the range of fluctuations of this quantity in the limit of weak disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acosta, V., Klein, A.: Analyticity of the density of states in the Anderson model in the Bethe lattice. J. Stat. Phys. 69, 277–305 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aizenman, M., Sims, R., Warzel, S.: Stability of the absolutely continuous spectrum of random Schrödinger operators on tree graphs. http://arxiv.org/list/math-ph/0502006, 2005. To appear in Probab. Theor. Relat. Fields

  3. Carmona, R., Lacroix, J.: Spectral theory of random Schrödinger operators. Boston: Birkhäuser, 1990

  4. Coddington, E.A., Levinson, N.: Theory of ordinary differential equations. New York: McGraw-Hill, 1955

  5. Duren, P.L.: Theory of H p spaces. New York: Academic, 1970

  6. Hupfer, T., Leschke, H., Müller, P., Warzel, S.: Existence and uniqueness of the integrated density of states for Schrödinger operators with magnetic fields and unbounded random potentials. Rev. Math. Phys. 13, 1547–1581 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kostrykin, V., Schrader, R.: Kirchhoff's rule for quantum wires. J. Phys. A 32, 595–630 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Kostrykin, V., Schrader, R.: A random necklace model. Waves and random media 14, S75–S9032 (2004)

    Google Scholar 

  9. Kotani, S.: One-dimensional random Schrödinger operators and Herglotz functions. In: K. Ito (ed.), Taneguchi Symp. PMMP, Amsterdam: North Holland, 1985, pp. 219–250

  10. Kottos, T., Smilansky, U.: Periodic orbit theory and spectral statistics for quantum graphs. Ann. Phys. 274, 76–124 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Kuchment, P.: Graph models for waves in thin structures. Waves and random media 12, R1–R24 (2002)

    Google Scholar 

  12. Kuchment, P.: Quantum graphs: I. Some basic structures. Waves and random media 14, S107–S128 (2004)

  13. Kuchment, P.: Quantum graphs II. Some spectral properties of quantum and combinatorial graphs. preprint. J. Phys. A: Math. Gen. 38, 4887–4900 (2005)

    MATH  MathSciNet  Google Scholar 

  14. Miller, J.D., Derrida, B.: Weak disorder expansion for the Anderson model on a tree. J. Stat. Phys. 75, 357–388 (1993)

    Article  Google Scholar 

  15. Minami, N.: An extension of Kotani's theorem to random generalized Sturm-Liouville operators. Commun. Math. Phys. 103, 387–402 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Minami, N.: An extension of Kotani's theorem to random generalized Sturm-Liouville operators II. In: Stochastic processes in classical and quantum systems, Lecture Notes in Physics 262, Berlin-Heidelberg-New York: Springer, 1986, pp. 411–419

  17. Pastur, L., Figotin, A.: Spectra of random and almost-periodic operators. Berlin: Springer, 1992

  18. Reed, M., Simon, B.: Methods of modern mathematical physics IV: Analysis of operators. New York: Academic Press, 1978

  19. Schanz, H., Smilansky, U.: Periodic-orbit theory of Anderson-localization on graphs. Phys. Rev. Lett. 84, 1427–1430 (2000)

    Article  ADS  Google Scholar 

  20. Schenker, J.H., Aizenman, M.: The creation of spectral gaps by graph decorations. Lett. Math. Phys. 53, 253–262 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sobolev, A.V., Solomyak, M.: Schrödinger operators on homogeneous metric trees: spectrum in gaps. Rev. Math. Phys. 14, 421–467 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Solomyak, M.: On the spectrum of the Laplacian on regular metric trees. Waves and random media 14, S155–S171 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Simon

Copyright rests with the authors. Faithful reproduction of the article for non-commercial purpose is permitted.

Simone Warzel: On leave from: Institut für Theoretische Physik, Universität Erlangen-Nürnberg, Germany

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aizenman, M., Sims, R. & Warzel, S. Absolutely Continuous Spectra of Quantum Tree Graphs with Weak Disorder. Commun. Math. Phys. 264, 371–389 (2006). https://doi.org/10.1007/s00220-005-1468-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1468-5

Keywords

Navigation