Skip to main content
Log in

Normalized ground states for the fractional Schrödinger–Poisson system with critical nonlinearities

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we study the existence and properties of ground states for the fractional Schrödinger–Poisson system with combined power nonlinearities

$$\begin{aligned}{\left\{ \begin{array}{ll}\displaystyle (-\Delta )^su-\phi |u|^{2^*_s-3}u=\lambda u+\mu |u|^{q-2}u+|u|^{2^*_s-2}u, &{}x \in {\mathbb {R}}^{3},\\ (-\Delta )^{s}\phi =|u|^{2^*_s-1}, &{}x \in {\mathbb {R}}^{3},\end{array}\right. } \end{aligned}$$

having prescribed mass

$$\begin{aligned} \int _{{\mathbb {R}}^3}|u|^2dx=a^2 \end{aligned}$$

and doubly critical growth, where \(s\in (0,1)\), \(\mu >0\) is a parameter, \(2<q<2^*_s\), \(2^*_s:=\frac{6}{3-2s}\) is the fractional critical Sobolev exponent and \(\lambda \in {\mathbb {R}}\) appears as a Lagrange multiplier. For a \(L^2\)-subcritical, \(L^2\)-critical and \(L^2\)-supercritical perturbation \(\mu |u|^{q-2}u\), respectively, we prove several existence, and non-existence results. Furthermore, the qualitative behavior of the ground states as \(\mu \rightarrow 0^+\) is also studied. Our results complement and improve the existing ones in several directions, and this study seems to be the first contribution regarding existence of normalized ground states for the fractional Sobolev critical Schrödinger–Poisson system with a critical nonlocal term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no data sets were generated or analysed during the current study.

References

  1. Alves, C.O., Ji, C., Miyagaki, O.H.: Multiplicity of normalized solutions for a Schrödinger equation with critical in \({\mathbb{R}}^N\). arXiv:2103.07940

  2. Applebaum, D.: L\(\acute{e}\)vy processes: from probability to finance and quantum groups. Notices Am. Math. Soc. 51(11), 1336–1347 (2004)

    Google Scholar 

  3. Appolloni, L., Secchi, S.: Normalized solutions for the fractional NLS with mass supercritical nonlinearity. J. Differ. Equ. 286, 248–283 (2021)

    MathSciNet  Google Scholar 

  4. Bartsch, T., Soave, N.: Multiple normalized solutions for a competing system of Schrödinger equations. Calc. Var. Partial Differ. Equ. 58, 22–24 (2019)

    Google Scholar 

  5. Bartsch, T., Molle, R., Rizzi, M., Verzini, G.: Normalized solutions of mass supercritical Schrödinger equations with potential. Commun. Partial Differ. Equ. 46, 1729–1756 (2021)

    Google Scholar 

  6. Bartsch, T., Zhong, X., Zou, W.: Normalized solutions for a coupled Schrödinger system. Math. Ann. 380, 1713–1740 (2021)

    MathSciNet  Google Scholar 

  7. Bartsch, T., Jeanjean, L., Soave, N.: Normalized solutions for a system of coupled cubic Schrödinger equations on \({\mathbb{R} }^3\). J. Math. Pures Appl. 106, 583–614 (2016)

    MathSciNet  Google Scholar 

  8. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88(3), 486–490 (1983)

    MathSciNet  Google Scholar 

  9. Cingolani, S., Gallo, M., Tanaka, K.: Symmetric ground states for doubly nonlocal equations with mass constraint. Symmetry 13, 1–17 (2021)

    Google Scholar 

  10. Cingolani, S., Gallo, M., Tanaka, K.: Normalized solutions for fractional nonlinear scalar field equations via Lagrangian formulation. Nonlinearity 34, 4017–4056 (2021)

    MathSciNet  Google Scholar 

  11. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    MathSciNet  Google Scholar 

  12. Du, M., Tian, L., Wang, J., Zhang, F.: Existence of normalized solutions for nonlinear fractional Schrödinger equations with trapping potentials. Proc. R. Soc. Edinb. Sect. A 149(3), 617–653 (2019)

    Google Scholar 

  13. Dou, X., He, X.: Ground states for critical fractional Schrödinger–Poisson systems with vanishing potentials. Math. Methods Appl. Sci. (2022). https://doi.org/10.1002/mma.8294

    Article  Google Scholar 

  14. Feng, B., Ren, J., Wang, Q.: Existence and instability of normalized standing waves for the fractional Schrödinger equations in the \(L^2\)-supercritical case. J. Math. Phys. 61, 071511 (2020)

    MathSciNet  Google Scholar 

  15. Feng, X.: Nontrivial solution for Schrödinger–Poisson equations involving the fractional Laplacian with critical exponent. RACSAM 115, 19 (2021)

    Google Scholar 

  16. Ghoussoub, N.: Duality and Perturbation Methods in Critical Point Theory, Cambridge Tracts in Mathematics, vol. 107. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  17. Frölhich, J., Lenzmann, E.: Dynamical collapse of white dwarfs in Hartree and Hartree–Fock theory. Commun. Math. Phys. 274, 737–750 (2007)

    MathSciNet  Google Scholar 

  18. He, X., Rădulescu, V.D.: Small linear perturbations of fractional Choquard equations with critical exponent. J. Differ. Equ. 282, 481–540 (2021)

    MathSciNet  Google Scholar 

  19. He, X.: Positive solutions for fractional Schrödinger–Poisson systems with doubly critical exponents. Appl. Math. Lett. 120, 107190 (2021)

    Google Scholar 

  20. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equation. Nonlinear Anal. TMA 28, 1633–1659 (1997)

    MathSciNet  Google Scholar 

  21. Jeanjean, L., Le, T.T.: Multiple normalized solutions for a Sobolev critical Schrödinger–Poisson–Slater equation. J. Differ. Equ. 303, 277–325 (2021)

    Google Scholar 

  22. Jeanjean, L., Lu, S.S.: A mass supercritical problem revisited. Calc. Var. Partial Differ. Equ. 59, 43 (2020)

    MathSciNet  Google Scholar 

  23. Jeanjean, L., Luo, T.: Sharp nonexistence results of prescribed \(L^2\)-norm solutions for some class of Schrödinger–Poisson and quasi-linear equations. Z. Angew. Math. Phys. 64, 937–954 (2013)

    MathSciNet  Google Scholar 

  24. Jeanjean, L., Jendrej, J., Le, T.T., Visciglia, N.: Orbital stability of ground states for a Sobolev critical Schrödinger equation. J. Math. Pures Appl. 164, 158–179 (2022)

    MathSciNet  Google Scholar 

  25. Ji, C.: Ground state sign-changing solutions for a class of nonlinear fractional Schrödinger–Poisson system in \({\mathbb{R} }^3\). Ann. Mat. Pura Appl. 198(5), 1563–1579 (2019)

    MathSciNet  Google Scholar 

  26. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66(2002), 056108 (2002)

    MathSciNet  Google Scholar 

  27. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268(4–6), 298–305 (2000)

    MathSciNet  Google Scholar 

  28. Li, G., Luo, X., Yang, T.: Normalized solutions for the fractional Schrödinger equation with a focusing nonlocal perturbation. Math. Methods Appl. Sci. 44(13), 10331–10360 (2021)

    MathSciNet  Google Scholar 

  29. Luo, H., Zhang, Z.: Normalized solutions to the fractional Schrödinger equations with combined nonlinearities. Calc. Var. Partial Differ. Equ. 59, 35 (2020)

    Google Scholar 

  30. Li, Q., Zou, W.: The existence and multiplicity of the normalized solutions for fractional Schrödinger equations involving Sobolev critical exponent in the \(L^2\)-subcritical and \(L^2\)-supercritical cases. Adv. Nonlinear Anal. 11, 1531–1551 (2022)

    MathSciNet  Google Scholar 

  31. Li, X., Ma, S.: Choquard equations with critical nonlinearities. Commun. Contemp. Math. 22, 1950023 (2020)

    MathSciNet  Google Scholar 

  32. Lenzmann, E.: Well-posedness for semi-relativistic Hartree equations of critical type. Math. Phys. Anal. Geom. 10, 43–64 (2007)

    MathSciNet  Google Scholar 

  33. Lieb, E., Loss, M.: Analysis, Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001)

    Google Scholar 

  34. Lieb, E.H., Simon, B.: The Hartree–Fock Theory for Coulomb Systems. Springer, Berlin (2005)

    Google Scholar 

  35. Murcia, E., Siciliano, G.: Positive semiclassical states for a fractional Schrödinger–Poisson system. Differ. Integr. Equ. 30, 231–258 (2017)

    Google Scholar 

  36. Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13, 115–162 (1959)

    MathSciNet  Google Scholar 

  37. Qu, S., He, X.: On the number of concentrating solutions of a fractional Schrödinger–Poisson system with doubly critical growth. Anal. Math. Phys. 12, 49 (2022)

    Google Scholar 

  38. Servadei, R., Valdinoci, E.: The Brezis–Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367, 67–102 (2015)

    MathSciNet  Google Scholar 

  39. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities. J. Differ. Equ. 269, 6941–6987 (2020)

    MathSciNet  Google Scholar 

  40. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case. J. Funct. Anal. 279, 43 (2020)

    MathSciNet  Google Scholar 

  41. Teng, K.: Existence of ground state solutions for the nonlinear fractional Schrödinger–Poisson system with critical Sobolev exponent. J. Differ. Equ. 261, 3061–3106 (2016)

    Google Scholar 

  42. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

    Google Scholar 

  43. Yang, Z., Zhao, F., Zhao, S.: Existence and multiplicity of normalized solutions for a class of fractional Schrödinger–Poisson equations. Ann. Fenn. Math. 47(2), 777–790 (2022)

    MathSciNet  Google Scholar 

  44. Zhang, J., Do, J.M., Squassina, M.: Fractional Schrödinger–Poisson systems with a general subcritical or critical nonlinearity. Adv. Nonlinear Stud. 16, 15–30 (2016)

    MathSciNet  Google Scholar 

  45. Zhen, M., Zhang, B.: Normalized ground states for the critical fractional NLS equation with a perturbation. Rev. Mat. Complut. 35, 89–132 (2022)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author was supported by the BIT Research and Innovation Promoting Project (Grant No. 2023YCXY046), NNSF(Grant Nos. 11971061 and 12271028), BNSF (Grant No. 1222017) and the Fundamental Research Funds for the Central Universities. The second author was supported by NNSF(Grant Nos. 12171497, 11771468 and 11971027). The authors thank the anonymous referees for their valuable comments and suggestions which are useful to clarify the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming He.

Additional information

Communicated by A. Mondino

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by NSFC (11771468, 11971027, 12171497).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., He, X. Normalized ground states for the fractional Schrödinger–Poisson system with critical nonlinearities. Calc. Var. 63, 65 (2024). https://doi.org/10.1007/s00526-024-02671-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-024-02671-2

Mathematics Subject Classification

Navigation