Skip to main content
Log in

A renormalizable field theory: The massive Gross-Neveu model in two dimensions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The Euclidean massive Gross-Neveu model in two dimensions is just renormalizable and asymptotically free. Thanks to the Pauli principle, bare perturbation theory with an ultra-violet cut-off (and the correct ansatz for the bare mass) is convergent in a disk, whose radius corresponds by asymptotic freedom to a small finite renormalized coupling constant. Therefore, the theory can be fully constructed in a perturbative way. It satisfies the O.S. axioms and is the Borel sum of the renormalized perturbation expansion of the model

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitter, P.K., Weisz, P.H.: Asymptotic scale invariance in a massive Thirring model withU(n) symmetry. Phys. Rev. D8, 4410 (1973)

    Google Scholar 

  2. Gross, D. Neveu, A.: Dynamical symmetry breaking in asymptotically free field theories. Phys. Rev. D10, 3235 (1974)

    Google Scholar 

  3. Coleman, S.: Quantum sine-Gordon equation as a massive Thirring model. Phys. Rev. D11, 2088 (1975);

    Google Scholar 

  4. Fröhlich, J., Seiler, E.: The massive Thirring-Schwinger model (QED2): Convergence of perturbation theory and particle structure. Helv. Phys. Acta49, 889 (1976)

    Google Scholar 

  5. Feldman, J., Magnen, J., Rivasseau, V., Sénéor, R.: Massive Gross-Neveu model: A rigorous perturbative construction. Phys. Rev. Lett.54, (1479) (1985)

    Google Scholar 

  6. 't Hooft, G.: On the convergence of planar diagram expansion. Commun. Math. Phys.86, 449 (1982) and Rigorous construction of planar diagram field theories in four dimensional Euclidean space. Commun. Math. Phys.88, 1 (1983)

    Google Scholar 

  7. Rivasseau, V.: Construction and Borel summability of planar 4-dimensional Euclidean field theory. Commun. Math. Phys.95, 445 (1984)

    Google Scholar 

  8. Gallavotti, G., Nicolò, F.: Renormalization theory in four-dimensional scalar fields, I and II. Commun. Math. Phys.100, 545 and101, 247 (1985)

    Google Scholar 

  9. Gawedzki, K., Kupiainen, A.: Massless lattice φ 44 theory: a nonperturbative control of a renormalizable model. Phys. Rev. Lett.54, 92 (1985) and IHES preprint (1984)

    Google Scholar 

  10. Feldman, J., Magnen, J., Rivasseau, V., Sénéor, R.: “Infrared Φ 44 , preprint Ecole Polytechnique, and contribution to the proceedings of Les Houches summer school (1984)

  11. Gawędzki, K., Kupiainen, A.: Harvard University preprint (1984)

  12. Felder, G., Gallavotti, G.: Perturbation theory and non-renormalizable scalar fields. Commun. Math. Phys.102, 549–571 (1985)

    Google Scholar 

  13. Felder, G.: Work in preparation on planar −gϕ 44+ɛ

  14. Gawedzki, K., Kupiainen, A.: Preprints IHES and Helsinki University (1985)

  15. Brydges, D.: Lectures at the 1984 “Les Houches” summer school (to be published)

  16. Seiler, E.: Gauge theories as a problem of constructive quantum field theory and statistical mechanics. Lecture Notes in Physics, Vol. 159. Berlin, Heidelberg, New York: Springer 1982

    Google Scholar 

  17. Feldman, J., Magnen, J., Rivasseau, V., Sénéor, R.: Bounds on completely convergent Euclidean Feynman graphs. Commun. Math. Phys.98, 273 (1985) and Bounds on renormalized graphs. Commun. Math. Phys.100, 23 (1985)

    Google Scholar 

  18. Mack, G., Pordt, A.: Convergent perturbation expansions for Euclidean quantum field theory. Commun. Math. Phys.97, 267 (1985)

    Google Scholar 

  19. Zimmermann, W.: Convergence of Bagoliubov's method for renormalization in momentum space. Commun. Math. Phys.15, 208 (1969)

    Google Scholar 

  20. Rivasseau, V.: In preparation

  21. de Calan, C., Rivasseau, V.: Local existence of the Borel transform in Euclidean Φ 44 . Commun. Math. Phys.82, 69 (1981)

    Google Scholar 

  22. Epstein, H., Glaser, V.: The role of locality in perturbation theory. Ann. Inst. H. Poincaré19, 211 (1973)

    Google Scholar 

  23. Sokal, A.: An improvement of Watson's theorem on Borel summability. J. Math. Phys.21, 261 (1980)

    Google Scholar 

  24. Wetzel, W.: Two-loop β-function for the Gross-Neveu model. Phys. Lett.153 B, 297 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Osterwalder

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feldman, J., Magnen, J., Rivasseau, V. et al. A renormalizable field theory: The massive Gross-Neveu model in two dimensions. Commun.Math. Phys. 103, 67–103 (1986). https://doi.org/10.1007/BF01464282

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01464282

Keywords

Navigation