Skip to main content
Log in

Design and Modelling of High-Performance Surface Plasmon Resonance Refractive Index Sensor Using BaTiO3, MXene and Nickel Hybrid Nanostructure

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this article, a highly sensitive surface plasmon resonance biomedical sensor based on barium titanate, MXene and nickel hybrid nanostructure has been reported. The present paper is based on a modified Kretschmann configuration. In this configuration, multilayers are vertically stacked together to improve the optical and electronic properties of the proposed surface plasmon resonance sensor. Barium titanate and MXene have unique properties like large surface area, chemical stability, tunable bandgap, small work function, layered structure and good matter-light interaction to improve the performance parameters of the proposed surface plasmon resonance sensor. Nickel also plays a vital role to enhance the performance parameters because it has high metallic conductivity, a large number of absorption sites and hydrophilicity. The optimized performance parameters are angular sensitivity (3160RIU−1), detection accuracy (0.3072 deg−1), figure of merit (97.075 RIU−1) and limit of detection (3.164 × 10−6) for CaF2 prism/Ag/BaTiO3/Ni/MXene/Sensing medium at 633 nm wavelength. The strong transverse magnetic field intensity is also plotted for the biomedical sensor to analyze the penetration depth. The designed surface plasmon resonance sensor’s optimal penetration depth into the sensing medium is 137 nm. The above results will open a new way to design and develop such type of surface plasmon resonance biomedical sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The dataset generated during analysis is available in the present article.

References

  1. Lee H-C, Li C-T, Chen H-F, Yen T-J (2015) Demonstration of an ultrasensitive refractive-index plasmonic sensor by enabling its quadrupole resonance in phase interrogation. Opt Lett 40:5152. https://doi.org/10.1364/ol.40.005152

    Article  PubMed  Google Scholar 

  2. Zheng G, Chen Y, Bu L et al (2016) Waveguide-coupled surface phonon resonance sensors with super-resolution in the mid-infrared region. Opt Lett 41:1582. https://doi.org/10.1364/ol.41.001582

    Article  CAS  PubMed  Google Scholar 

  3. Ozbay E (2006) Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science (80- ) 311:189–193. https://doi.org/10.1126/science.1114849

  4. Srivastava SK, Verma R, Gupta BD (2016) Theoretical modeling of a self-referenced dual mode SPR sensor utilizing indium tin oxide film. Opt Commun 369:131–137. https://doi.org/10.1016/j.optcom.2016.02.035

    Article  CAS  Google Scholar 

  5. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528–539. https://doi.org/10.1007/s00216-003-2101-0

    Article  CAS  PubMed  Google Scholar 

  6. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sensors Actuators, B Chem 54:3–15. https://doi.org/10.1016/S0925-4005(98)00321-9

    Article  CAS  Google Scholar 

  7. Singh MK, Pal S, Verma A et al (2021) Sensitivity enhancement using anisotropic black phosphorus and antimonene in bi-metal layer-based surface plasmon resonance biosensor. Superlattices Microstruct 156:106969. https://doi.org/10.1016/j.spmi.2021.106969

    Article  CAS  Google Scholar 

  8. Pal A, Jha A (2021) A theoretical analysis on sensitivity improvement of an SPR refractive index sensor with graphene and barium titanate nanosheets. Optik (Stuttg) 231:166378. https://doi.org/10.1016/j.ijleo.2021.166378

    Article  CAS  Google Scholar 

  9. Nisha A, Maheswari P, Anbarasan PM et al (2019) Sensitivity enhancement of surface plasmon resonance sensor with 2D material covered noble and magnetic material (Ni). Opt Quantum Electron. https://doi.org/10.1007/s11082-018-1726-3

    Article  Google Scholar 

  10. Cai D, Lu Y, Lin K et al (2008) Improving the sensitivity of SPR sensors based on gratings by double-dips method (DDM). Opt Express 16:14597. https://doi.org/10.1364/oe.16.014597

    Article  PubMed  Google Scholar 

  11. Lee M, Jeon H, Kim S (2015) A highly tunable and fully biocompatible silk nanoplasmonic optical sensor. Nano Lett 15:3358–3363. https://doi.org/10.1021/acs.nanolett.5b00680

    Article  CAS  PubMed  Google Scholar 

  12. Singh S, Sharma AK, Lohia P, Dwivedi DK (2021) Ferric oxide and heterostructure BlueP/MoSe2 nanostructure based SPR sensor using magnetic material nickel for sensitivity enhancements. Superlattices Microstruct. https://doi.org/10.1016/j.spmi.2021.107126

    Google Scholar 

  13. Ma Y, Fu S, Zhou M (2022) Flexible and highly-sensitive pressure sensor based on controllably oxidized MXene. 1–12. https://doi.org/10.1002/inf2.12328

  14. Singh S, Singh PK, Umar A et al (2020) 2D nanomaterial-based surface plasmon resonance sensors for biosensing applications. Micromachines 11(8):779. https://doi.org/10.3390/mi11080779

    Article  PubMed Central  Google Scholar 

  15. Ouyang Q, Zeng S, Jiang L et al (2016) Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor. Sci Rep 6:1–13. https://doi.org/10.1038/srep28190

    Article  CAS  Google Scholar 

  16. Gan S, Zhao Y, Dai X, Xiang Y (2019) Sensitivity enhancement of surface plasmon resonance sensors with 2D franckeite nanosheets. Results Phys. https://doi.org/10.1016/j.rinp.2019.102320

    Article  Google Scholar 

  17. Srivastava A, Prajapati YK (2019) Performance analysis of silicon and blue phosphorene/MoS2 hetero-structure based SPR sensor. Photonic Sensors 9:284–292. https://doi.org/10.1007/s13320-019-0533-1

    Article  CAS  Google Scholar 

  18. Kumar R, Pal S, Pal N et al (2021) High-performance bimetallic surface plasmon resonance biochemical sensor using a black phosphorus–MXene hybrid structure. Appl Phys A Mater Sci Process 127:1–12. https://doi.org/10.1007/s00339-021-04408-w

    Article  CAS  Google Scholar 

  19. Karki B, Uniyal A, Chauhan B, Pal A (2022) Sensitivity enhancement of a graphene, zinc sulfide-based surface plasmon resonance biosensor with an Ag metal configuration in the visible region. J Comput Electron. https://doi.org/10.1007/s10825-022-01854-4

    Article  Google Scholar 

  20. Wang Y, Yue Y, Cheng F et al (2022) Ti 3 C 2 Tx MXene-based flexible piezoresistive physical sensors. ACS Nano 16(2):1734–1758. https://doi.org/10.1021/acsnano.1c09925

    Article  CAS  PubMed  Google Scholar 

  21. Li X, Ma Y, Yue Y et al (2022) A flexible Zn-ion hybrid micro-supercapacitor based on MXene anode and V 2 O 5 cathode with high capacitance. Chem Eng J 428:130965. https://doi.org/10.1016/j.cej.2021.130965

    Article  CAS  Google Scholar 

  22. Yan J, Ma Y, Jia G et al (2022) Bionic MXene based hybrid film design for an ultrasensitive piezoresistive pressure sensor. Chem Eng J 431:133458. https://doi.org/10.1016/j.cej.2021.133458

    Article  CAS  Google Scholar 

  23. Malitson IH (1963) A redetermination of some optical properties of calcium fluoride. Appl Opt 2:1103. https://doi.org/10.1364/ao.2.001103

    Article  CAS  Google Scholar 

  24. Gupta BD, Sharma AK (2005) Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study. Sensors Actuators, B Chem 107:40–46. https://doi.org/10.1016/j.snb.2004.08.030

    Article  CAS  Google Scholar 

  25. Wemple SH, Didomenico M, Camlibel I (1968) Dielectric and optical properties of melt-grown BaTiO3. J Phys Chem Solids 29:1797–1803. https://doi.org/10.1016/0022-3697(68)90164-9

    Article  Google Scholar 

  26. Liu N, Wang S, Cheng Q et al (2021) High sensitivity in Ni-based SPR sensor of blue phosphorene/transition metal dichalcogenides hybrid nanostructure. Plasmonics. https://doi.org/10.1007/s11468-021-01421-w

    Article  Google Scholar 

  27. Yang L, Wang J, Yang LZ et al (2018) Few-layer Ti3C2Tx MXene: a promising surface plasmon resonance biosensing material to enhance the sensitivity. Sci Rep 8:1–10. https://doi.org/10.1038/s41598-018-20952-7

    CAS  Google Scholar 

  28. Agarwal S, Prajapati YK, Maurya JB (2016) Effect of metallic adhesion layer thickness on surface roughness for sensing application. IEEE Photonics Technol Lett 28:2415–2418. https://doi.org/10.1109/LPT.2016.2597856

    Article  CAS  Google Scholar 

  29. Chen P, Li N, Chen X et al (2018) The rising star of 2D black phosphorus beyond graphene: synthesis, properties and electronic applications. 2D Mater 5. https://doi.org/10.1088/2053-1583/aa8d37

  30. Graphene U, Plasmonic B, Chip S, Bv APB (2020) Experimental demonstration of DNA hybridization 38:5191–5198. https://doi.org/10.1109/JLT.2020.2998138

    Google Scholar 

  31. Singh S, Sharma AK, Lohia P, Dwivedi DK (2021) Sensitivity evaluation of a multi-layered heterostructure blue phosphorene/MoS2 surface plasmon resonance based fiber optic sensor: a simulation study. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-021-00344-x

    Google Scholar 

  32. Pal S, Verma A, Raikwar S et al (2018) Detection of DNA hybridization using graphene-coated black phosphorus surface plasmon resonance sensor. Appl Phys A Mater Sci Process. https://doi.org/10.1007/s00339-018-1804-1

    Article  Google Scholar 

  33. Rahman MS, Anower MS, Rahman MK et al (2017) Modeling of a highly sensitive MoS2-Graphene hybrid based fiber optic SPR biosensor for sensing DNA hybridization. Optik (Stuttg) 140:989–997. https://doi.org/10.1016/j.ijleo.2017.05.001

    Article  CAS  Google Scholar 

  34. Pal S, Verma A, Saini JP, Prajapati YK (2019) Sensitivity enhancement using silicon black phosphorous –TMDC coated surface plasmon resonance biosensor. IET Optoelectron 13:196–201. https://doi.org/10.1049/iet-opt.2018.5023

    Article  Google Scholar 

  35. Khazaei M, Ranjbar A, Arai M et al (2017) Electronic properties and applications of MXenes: a theoretical review. J Mater Chem C 5:2488–2503. https://doi.org/10.1039/c7tc00140a

    Article  CAS  Google Scholar 

  36. Liu H, Duan C, Yang C et al (2015) A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2. Elsevier B.V.

  37. Xu Y, Ang YS, Wu L, Ang LK (2019) High sensitivity surface plasmon resonance sensor based on two-dimensional MXene and transition metal dichalcogenide: a theoretical study. Nanomaterials. https://doi.org/10.3390/nano9020165

    PubMed  PubMed Central  Google Scholar 

  38. Walsh LA, Addou R, Wallace RM, Hinkle CL (2018) Molecular beam epitaxy of transition metal dichalcogenides. In: Molecular Beam Epitaxy. Elsevier, pp 515–531. https://doi.org/10.1016/B978-0-12-812136-8.00024-4

  39. Khazaei M, Arai M, Sasaki T et al (2013) Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv Funct Mater 23:2185–2192. https://doi.org/10.1002/adfm.201202502

    Article  CAS  Google Scholar 

  40. Sinha A, Dhanjai ZH et al (2018) MXene: an emerging material for sensing and biosensing. TrAC - Trends Anal Chem 105:424–435. https://doi.org/10.1016/j.trac.2018.05.021

    Article  CAS  Google Scholar 

  41. Kumar R, Pal S, Prajapati YK, Saini JP (2020) Sensitivity enhancement of MXene based SPR sensor using silicon: theoretical analysis. SILICON. https://doi.org/10.1007/s12633-020-00558-3

    Google Scholar 

  42. Kumar R, Pal S, Verma A et al (2020) Effect of silicon on sensitivity of SPR biosensor using hybrid nanostructure of black phosphorus and MXene. Superlattices Microstruct 145:106591. https://doi.org/10.1016/j.spmi.2020.106591

    Article  CAS  Google Scholar 

  43. Mudgal N, Yupapin P, Ali J, Singh G (2020) BaTiO3-graphene-affinity layer–based surface plasmon resonance (SPR) biosensor for pseudomonas bacterial detection. Plasmonics 15:1221–1229. https://doi.org/10.1007/s11468-020-01146-2

    Article  CAS  Google Scholar 

  44. Suresh NV, Rajesh KB, Pillai TVS (2021) Sensitivity enhancement of surface plasmon resonance sensor using Al–Au–BaTiO3–graphene layers. J Opt 50:152–159. https://doi.org/10.1007/s12596-021-00694-y

    Article  Google Scholar 

  45. Kumar A, Yadav AK, Kushwaha AS, Srivastava SK (2020) A comparative study among WS2, MoS2 and graphene based surface plasmon resonance (SPR) sensor. Sensors and Actuators Reports 2:100015. https://doi.org/10.1016/j.snr.2020.100015

    Article  Google Scholar 

  46. Singh Y, Paswan MK, Raghuwanshi SK (2021) Sensitivity enhancement of SPR sensor with the black phosphorus and graphene with bi-layer of gold for chemical sensing. Plasmonics. https://doi.org/10.1007/s11468-020-01315-3

    Article  Google Scholar 

  47. Raikwar S, Srivastava DK, Saini JP, Prajapati YK (2021) 2D-antimonene-based surface plasmon resonance sensor for improvement of sensitivity. Appl Phys A Mater Sci Process. https://doi.org/10.1007/s00339-020-04248-0

    Article  Google Scholar 

  48. Singh S, Sharma AK, Lohia P, Dwivedi DK (2021) Theoretical analysis of sensitivity enhancement of surface plasmon resonance biosensor with zinc oxide and blue phosphorus/MoS2 heterostructure. Optik (Stuttg) 244:167618. https://doi.org/10.1016/j.ijleo.2021.167618

    Article  CAS  Google Scholar 

  49. Sun P, Wang M, Liu L et al (2019) Sensitivity enhancement of surface plasmon resonance biosensor based on graphene and barium titanate layers. Appl Surf Sci 475:342–347. https://doi.org/10.1016/j.apsusc.2018.12.283

    Article  CAS  Google Scholar 

  50. Singh S (2022) Sensitivity enhancement of SPR biosensor employing heterostructure blue phosphorus /MoS2 and silicon layer. Emerging Materials Research 11(2):239–250. https://doi.org/10.1680/jemmr.22.00009

    Article  Google Scholar 

  51. Yu Y, Hu X, Wang S, Qiao H, Liu Z, Song K, Shen X (2022) High mass loading Ni4Co1-OH@ CuO core-shell nanowire arrays obtained by electrochemical reconstruction for alkaline energy storage. Nano Res 15(1):685–693. https://doi.org/10.1007/s12274-021-3547-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sachin Singh, one of the authors, expresses his gratitude to the Madan Mohan Malaviya University of Technology Gorakhpur for providing a research cum teaching fellowship to compete for the present work. Technical support received from Mr. Vipin Kumar Upadhyay (Research Scholar), Department of Electronics and Communication Engineering, Madan Mohan Malaviya University of Technology Gorakhpur is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Sachin Singh: Original draft writing, methodology, conceptualization, software work. D. K. Dwivedi and Anuj K. Sharma: reviewing, editing and supervision. Pooja Lohia and Pravin Kumar Singh: data analysis and investigation.

Corresponding author

Correspondence to D. K. Dwivedi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics Approval

This is a theoretical study that does not require ethical approval.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Sharma, A.K., Lohia, P. et al. Design and Modelling of High-Performance Surface Plasmon Resonance Refractive Index Sensor Using BaTiO3, MXene and Nickel Hybrid Nanostructure. Plasmonics 17, 2049–2062 (2022). https://doi.org/10.1007/s11468-022-01692-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-022-01692-x

Keywords

Navigation