Skip to main content
Log in

Design and modeling of reconfigurable surface plasmon resonance refractive index sensor using Al2O3, nickel, and heterostructure BlueP/WSe2 nanofilms

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In the past years, angular interrogation has been most widely used to calculate sensitivity of surface plasmon resonance sensors. The proposed surface plasmon resonance sensor incorporates ferromagnetic material nickel (Ni), and Al2O3 as a protective layer, and two-dimensional (2D) heterostructure material (Blue phosphorous-tungsten di-selenide). The device structure is based on Kretschmann configuration, in which Al2O3 sheet is sandwiched between silver (Ag) and nickel (Ni) films, to enhance the sensitivity of the SPR sensor in the visible region. The operated wavelength 633 nm has been used for proposed device structure. The numerical simulation has been performed by MATLAB and COMSOL Multiphysics 5.3a software in this article. The simulation results show for analyte refractive indices ranging from 1.330 to 1.335. The proposed SPR configuration consists of 20 nm Al2O3, 60 nm Ag, and a monolayer of BlueP/WSe2 which enhance the sensitivity 398°/RIU. Some other performance parameters like figure of merit, detection accuracy, limit of detection, full width at half maxima, and TM electric field intensity have been also calculated in this work. The proposed SPR sensor structural has been useful for biomedical and chemical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

This article contains all the information required to understand it.

References

  1. J. Zenneck, Uber die Fortpflanztmg ebener elektro-magnetischer Wellen langs einer ebenen Leiterflache und ihre Beziehung zur drahtlosen Telegraphie. Ann. Phys. 23, p846-866 (1907)

    ADS  Google Scholar 

  2. A. Sommerfeld, Propagation of waves in wireless telegraphy. Ann. Physik 28, 665–736 (1909)

    ADS  MATH  Google Scholar 

  3. R.H. Ritchie, Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957)

    ADS  MathSciNet  Google Scholar 

  4. C.J. Powell, J.B. Swan, Effect of oxidation on the characteristic loss spectra of aluminum and magnesium. Phys. Rev. 118, 640–643 (1960)

    ADS  Google Scholar 

  5. H.H. Nguyen, J. Park, S. Kang, M. Kim, Surface plasmon resonance: a versatile technique for biosensor applications. Sensors 15, 10481 (2015)

    ADS  Google Scholar 

  6. H. Heidarzadeh, Highly sensitive plasmonic sensor based on ring shape nanoparticles for the detection of ethanol and D-glucose concentration. IEEE Tran. Nano. 19, 397–404 (2020)

    Google Scholar 

  7. J. Zhou, Q. Qi, C. Wang, Y. Qian, G. Liu, Y. Wang, L. Fu, Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices. Bios. Bioe. 142, 111449 (2019)

    Google Scholar 

  8. B.D. Gupta, A. Pathak, V. Semwal, Carbon-based nanomaterials for plasmonic sensors: a review. Sensors 19(16), 3536 (2019)

    ADS  Google Scholar 

  9. N.F. Chiu, H.T. Yang, High-sensitivity detection of the lung cancer biomarker CYFRA21-1 in serum samples using a carboxyl-MoS2 functional film for SPR-based immunosensors. Fron. Bioe. Biot. 8, 234 (2020)

    Google Scholar 

  10. A. Raed, I. Mehrdad, Y. Mustafa, A short review on the role of the metal-graphene hybrid nanostructure in promoting the localized surface plasmon resonance sensor performance. Sensors 19(4), 862 (2019)

    Google Scholar 

  11. S. Kaushik, U.K. Tiwari, A. Deep, R.K. Sinha, Two-dimensional transition metal dichalcogenides assisted biofunctionalized optical fiber SPR biosensor for efficient and rapid detection of bovine serum albumin. SCI REP-UK 9, 6987 (2019)

    ADS  Google Scholar 

  12. B.J. Yakes, J. Buijs, C.T. Elliott, Surface plasmon resonance biosensing: approaches for screening and characterizing antibodies for food diagnostics. Talanta 156, 55–63 (2016)

    Google Scholar 

  13. J. Kim, S. Hong, Y. Choi, Sensitive detection of formaldehyde gas using modified dandelion-like SiO2/Au film and surface plasmon resonance system. J Nanosci Nanotechno 19(8), 4807–4811 (2019)

    Google Scholar 

  14. M.K. Singh, S. Pal, A. Verma, V. Mishra, Y.K. Prajapati, Sensitivity enhancement using anisotropic black phosphorus and antimonene in bi-metal layer-based surface plasmon resonance biosensor. Superlattices Microstruct. 156, 106969 (2021)

    Google Scholar 

  15. M. Lee, H. Jeon, S. Kim, A highly tunable and fully biocompatible silk nano plasmonic optical sensor. Nano Lett. 15(5), 3358–3363 (2015)

    ADS  Google Scholar 

  16. M.M. Rahman, M.M. Rana, M.S. Rahman, M.S. Anower, M.A. Mollah, A.K. Paul, Sensitivity enhancement of SPR biosensors employing heterostructure of PtSe2 and 2D materials. Opt. Mater. Amst. 107, 110123 (2020)

    Google Scholar 

  17. H. Fu, S. Zhang, H. Chen, J. Weng, Graphene enhances the sensitivity of fiber optic surface plasmon resonance biosensor. IEEE Sens. 15(10), 5478–5482 (2015)

    Google Scholar 

  18. D. Cai, Y. Lu, K. Lin, P. Wang, Ming, H, “Improving the sensitivity of SPR sensors based on gratings by double-dips method (DDM).” Opt. Express 16(19), 14597 (2008)

    ADS  Google Scholar 

  19. S. Chen, Hu. Shiqi, Wu. Yichen, D. Deng, Y. Luo, Z. Chen, Ultrasensitive biosensor with hyperbolic metamaterials composed of silver and zinc oxide. Nanomaterials 11(9), 2220 (2021)

    Google Scholar 

  20. S. Chen, C. Lin, Sensitivity comparison of graphene-based surface plasmon resonance biosensor with Au, Ag and Cu in the visible region. Mater. Res. Express 6(5), 1108–1116 (2019)

    Google Scholar 

  21. B. Karki, A. Uniyal, B. Chauhan, A. Pal, Sensitivity enhancement of a graphene, zinc sulfide-based surface plasmon resonance biosensor with an Ag metal configuration in the visible region. J. Comp. Elec. 21(2), 1–8 (2022)

    Google Scholar 

  22. J. Borges, M.S. Rodrigues, T. Kubart, S. Kumar, K. Leifer, M. Evaristo, A. Cavaleiro, M. Apreutesei, R.M.S. Pereira, M.I. Vasilevskiy, T. Polcar, F. Vaz, Thin films composed of gold 34 nanoparticles dispersed in a dielectric matrix: the influence of the host matrix on the optical and mechanical responses. Thin Solid Films 596, 8–17 (2015)

    ADS  Google Scholar 

  23. J. Borges, F. Vaz, L. Marques, AlNxOy, thin films deposited by DC reactive magnetron sputtering. Appl. Surf. Sci. 257, 1478–1483 (2010)

    ADS  Google Scholar 

  24. J. Borges, N.P. Barradas, E. Alves, M.F. Beaufort, D. Eyidi, F. Vaz, L. Marques, Influence of stoichiometry and structure on the optical properties of AlNxOy films. J. Phys. D. Appl. Phys. 46(1), 015305 (2013)

    ADS  Google Scholar 

  25. A.K. Sharma, Analyzing the application of silicon–silver–2D nanomaterial–Al2O3 heterojunction in plasmonic sensor and its performance evaluation. Opti. Comm. 410, 75–82 (2018)

    ADS  Google Scholar 

  26. J.B. Maurya, S. Raikawar, Y.K. Prajapati, J.P. Saini, A silicon black phosphorous based surface plasmon resonance sensor for the detection of NO2 gas. Optik 160, 428–433 (2018)

    ADS  Google Scholar 

  27. S. Pal, A. Verma, S. Raikwar, Y.K. Prajapati, J.P. Saini, Detection of DNA hybridization using black phosphorus-graphene coated SPR Sensor. Appl. Phys. A-Mater. 124(5), 124–394 (2018)

    Google Scholar 

  28. A. Srivastava, A. Verma, R. Das, Y.K. Prajapati, A theoretical approach to improve the performance of SPR Biosensor using MXene and black phosphorus. Optik 203, 163430 (2020)

    ADS  Google Scholar 

  29. G. AlaguVibisha, J.K. Nayak, P. Maheswari, N. Priyadharsini, A. Nisha, Z. Jaroszewicz, K.B. Rajesh, R. Jha, Sensitivity enhancement of surface plasmon resonance sensor using hybrid configuration of 2D materials over bimetallic layer of Cu–Ni. Opti. Comm. 463, 125337 (2020)

    Google Scholar 

  30. A. Panda, P.D. Pukhrambam, Modeling of high-performance SPR refractive index sensor employing novel 2D materials for detection of malaria pathogens. IEEE Tran. Nano Bios. 21(2), 312–319 (2021)

    Google Scholar 

  31. N. Mudgal, P. Yupapin, J. Ali, G. Singh, BaTiO3-graphene-affinity layer–based surface plasmon resonance (SPR) biosensor for pseudomonas bacterial detection. Plasmonics 15(5), 1221–1229 (2020)

    Google Scholar 

  32. M.F. Alotaibi, Y. Al-Hadeethi, P. Lohia, S. Singh, D.K. Dwivedi, A. Umar, H.M. Alzayed, H. Algadi, S. Baskoutas, Numerical study to enhance the sensitivity of a surface plasmon resonance sensor with BlueP/WS2-covered Al2O3-nickel nanofilms. Nano 12(13), 2205 (2022)

    Google Scholar 

  33. N. Liu, S. Wang, Q. Cheng, B. Pang, J. Lv, High sensitivity in Ni-based SPR sensor of blue phosphorene/transition metal dichalcogenides hybrid nanostructure. Plasmonics 16(5), 1567–1576 (2021)

    Google Scholar 

  34. A.S. Kushwaha, A. Kumar, R. Kumar, S.K. Srivastava, A study of surface plasmon resonance (SPR) based biosensor with improved sensitivity. Phot. Nano. Fund. Appl. 31, 99–106 (2018)

    Google Scholar 

  35. S. Singh, P.K. Singh, A. Umar, P. Lohia, H. Albargi, L. Castaneda, D.K. Dwivedi, 2D nanomaterial-based surface plasmon resonance sensors for biosensing applications. Micromachines 11(8), 779 (2020)

    Google Scholar 

  36. M. Alagdar, B. Yousif, N.F. Areed, M. Elzalabani, Improved the quality factor and sensitivity of a surface plasmon resonance sensor with transition metal dichalcogenide 2D nanomaterials. J. Nano. Rese. 22(7), 1–13 (2020)

    Google Scholar 

  37. Y. Xu, L. Wu, L.K. Ang, Surface exciton polaritons: a promising mechanism for refractive-index sensing. Phys. Rev. Appl. 12(2), 024029 (2019)

    ADS  Google Scholar 

  38. R. Kumar, S. Pal, Y.K. Prajapati, J.P. Saini, Sensitivity enhancement of MXene based SPR sensor using silicon: theoretical analysis. SILICON 15(6), 1887–1895 (2021)

    Google Scholar 

  39. A.K. Pandey, A.K. Sharma, Simulation and analysis of plasmonic sensor in NIR with fluoride glass and graphene layer. Phot. Nano. Fund. Appl. 28, 94–99 (2018)

    Google Scholar 

  40. M.K. Singh, S. Pal, A. Verma, V. Mishra, Y.K. Prajapati, Sensitivity enhancement using anisotropic black phosphorus and antimonene in bi-metal layer-based surface plasmon resonance biosensor. Superlattices Microstruct. 156, 106969 (2021)

    Google Scholar 

  41. K. Wei, X. Su, L. Zhang, P. Wu, H. Zhu, K. Wu, Y. Guo, “Performance Evaluation of Bimetallic Surface Plasmon Resonance Biosensor Based on Copper and MXene”,In Rece. Tren. in Elec. and Comm. Springer, Singapore, 13–25 (2022)

  42. S. Shivangani, M.F. Alotaibi, Y. Al-Hadeethi, P. Lohia, S. Singh, D.K. Dwivedi, A. Umar, H.M. Alzayed, H. Algadi, S. Baskoutas, Numerical study to enhance the sensitivity of a surface plasmon resonance sensor with BlueP/WS2-covered Al2O3-nickel nanofilms. NANO 12, 2205 (2022)

    Google Scholar 

  43. S. Singh, A.K. Sharma, P. Lohia, D.K. Dwivedi, Theoretical analysis of sensitivity enhancement of surface plasmon resonance biosensor with zinc oxide and blue phosphorus/MoS2 heterostructure. Optik 244, 167618 (2021)

    ADS  Google Scholar 

  44. L. Wu, H.S. Chu, W.S. Koh, E.P. Li, Highly sensitive graphene biosensors based on surface plasmon resonance. Opti. Expr. 18(14), 14395–14400 (2010)

    ADS  Google Scholar 

  45. R. Tiwari, S. Singh, R.K. Yadav, P. Lohia, D.K. Dwivedi, Improved performance of platinum diselenide based surface plasmon resonance biosensor using silicon. Sens. Lett. 18(9), 711–718 (2020)

    Google Scholar 

  46. Y. Jiang, S. Pillai, M.A. Green, Re-evaluation of literature values of silver optical constants. Opti. Expr. 23(3), 2133–2144 (2015)

    ADS  Google Scholar 

  47. Y. Cai, G. Zhang, Y.W. Zhang, Layer-dependent band alignment and work function of few-layer phosphorene. Sci. Rep. 4, 6677–6682 (2014)

    ADS  Google Scholar 

  48. S. Pal, A. Verma, Y.K. Prajapati, J.P. Saini, Sensitive detection using heterostructure of black phosphorus, transition metal di-chalcogenides and MXene in SPR sensor. Appl. Phys-A 126(10), 1–10 (2020)

    Google Scholar 

  49. S. Agarwal, Y.K. Prajapati, J.B. Maurya, Effect of metallic adhesion layer thickness on surface roughness for sensing application. IEEE Phot. Tech. Lett. 28(21), 2415–2418 (2016)

    ADS  Google Scholar 

  50. S. Singh, A.K. Sharma, P. Lohia, D.K. Dwivedi, Sensitivity evaluation of a multi-layered heterostructure blue phosphorene/MoS2 surface plasmon resonance-based fiber optic sensor: a simulation study. Tran. Elec. Elec. Mate. 23(3), 254–261 (2022)

    Google Scholar 

  51. S. Singh, A.K. Sharma, P. Lohia, D.K. Dwivedi, Ferric oxide and heterostructure BlueP/MoSe2 nanostructure based SPR sensor using magnetic material nickel for sensitivity enhancements. Micro. Nano. 163, 107126 (2022)

    Google Scholar 

  52. A.K. Pandey and A.K. Sharma, Blue phosphorene/two-dimensional material heterostructure: properties and refractive index sensing perspectives, In Hand. of Nano. for Sens. Appl., pp. 3–14 (2021)

Download references

Acknowledgements

Authors are thankful to Madan Mohan Malaviya University of Technology, Gorakhpur, for providing the support to carry out this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors have equal contribution to the study.

Corresponding author

Correspondence to D. K. Dwivedi.

Ethics declarations

Conflict of interest

The authors confirm that this manuscript has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivangani, Lohia, P., Singh, P.K. et al. Design and modeling of reconfigurable surface plasmon resonance refractive index sensor using Al2O3, nickel, and heterostructure BlueP/WSe2 nanofilms. J Opt 52, 1358–1369 (2023). https://doi.org/10.1007/s12596-022-00973-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00973-2

Keywords

Navigation