Skip to main content
Log in

High mass loading Ni4Co1-OH@CuO core-shell nanowire arrays obtained by electrochemical reconstruction for alkaline energy storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The design of three-dimensional (3D) core-shell heterostructures is an efficient method to achieve high mass specific capacity of electroactive materials under high mass loading. In this work, porous Ni4Co1-OH nanosheets with a mass loading of 7.7 mg·cm−2 are obtained by using Ni4Co1-(NO3)2(OH)4 supported on the CuO nanowires as precursors via an unavoidable electrochemically induced phase reconstruction. During the electrochemical reconstruction process, the NO3 anions in Ni4Co1-(NO3)2(OH)4 are easily replaced by OH anions in the electrolyte. The phase reconstruction is accompanied by the decrease of ionic diffusion resistance and the increase of pore volume, and the shift of binding energy. The obtained Ni4Co1-OH nanosheets show a high mass specific capacity of 363.6 mAh·g−1 at 5 mA·cm−2. The as-fabricated alkaline hybrid supercapacitor and Ni-Zn battery deliver high energy density of 293.1 and 604.9 Wh·kg−1, respectively, indicating excellent alkaline energy storage performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chao, D. L.; Zhou, W. H.; Xie, F. X.; Ye, C.; Li, H.; Jaroniec, M.; Qiao, S. Z. Roadmap for advanced aqueous batteries: From design of materials to applications. Sci. Adv. 2020, 6, eaba4098.

    Article  CAS  Google Scholar 

  2. Li, Q. L.; Zhang, Q. C.; Liu, C. L.; Gong, W. B.; Zhou, Z. Y.; Man, P.; Guo, J. B.; He, B.; Zhang, K.; Lu, W. B. et al. Interface engineered and surface modulated electrode materials for ultrahigh-energy-density wearable NiCo//Fe batteries. Energy Storage Mater. 2020, 27, 316–326.

    Article  Google Scholar 

  3. Huang, M.; Li, M.; Niu, C. J.; Li, Q.; Mai, L. Q. Recent advances in rational electrode designs for high-performance alkaline rechargeable batteries. Adv. Funt. Mater. 2019, 29, 1807847.

    Article  Google Scholar 

  4. Assefi, M.; Maroufi, S.; Mayyas, M.; Sahajwalla, V. Recycling of Ni-Cd batteries by selective isolation and hydrothermal synthesis of porous NiO nanocuboid. J. Environ. Chem. Eng. 2018, 6, 4671–4675.

    Article  CAS  Google Scholar 

  5. Brisse, A. L.; Stevens, P.; Toussaint, G.; Crosnier, O.; Brousse, T. Ni(OH)2 and NiO based composites: Battery type electrode materials for hybrid supercapacitor devices. Materials 2018, 11, 1178.

    Article  Google Scholar 

  6. Potphode, D.; Sayed, M. S.; Lama Tamang, T.; Shim, J. J. High-performance binder-free flower-like (Ni0.66Co0.3Mn0.04)2(OH)2(CO3) array synthesized using ascorbic acid for supercapacitor applications. Chem. Eng. J. 2019, 378, 122129.

    Article  CAS  Google Scholar 

  7. Chen, H.; Shen, Z. H.; Pan, Z. H.; Kou, Z. K.; Liu, X. M.; Zhang, H.; Gu, Q. L.; Guan, C.; Wang, J. Hierarchical micro-nano sheet arrays of nickel-cobalt double hydroxides for high-Rate Ni-Zn batteries. Adv. Sci. 2019, 6, 1802002.

    Article  Google Scholar 

  8. Li, X. C.; Shen, J. J.; Sun, W.; Hong, X. D.; Wang, R. T.; Zhao, X. H.; Yan, X. B. A super-high energy density asymmetric supercapacitor based on 3D core-shell structured NiCo-layered double hydroxide@carbon nanotube and activated polyaniline-derived carbon electrodes with commercial level mass loading. J. Mater. Chem. A 2015, 3, 13244–13253.

    Article  CAS  Google Scholar 

  9. Chen, H. Y.; Kang, Y. R.; Cai, F.; Zeng, S.; Li, W. W.; Chen, M. H.; Li, Q. W. Electrochemical conversion of Ni2(OH)2CO3 into Ni(OH)2 hierarchical nanostructures loaded on a carbon nanotube paper with high electrochemical energy storage performance. J. Mater. Chem. A 2015, 3, 1875–1878.

    Article  CAS  Google Scholar 

  10. Peng, L.; Lv, L.; Wan, H. Z.; Ruan, Y. J.; Ji, X.; Liu, J.; Miao, L.; Wang, C. D.; Jiang, J. J. Understanding the electrochemical activation behavior of Co(OH)2 nanotubes during the ion-exchange process. Mater. Today Energy 2017, 4, 122–131.

    Article  Google Scholar 

  11. Yu, Y. W.; Yang, B. Q.; Wang, Y. L.; Shen, X. D.; Hu, X. L. Low-temperature liquid phase synthesis of flower-like NiCo2O4 for high-efficiency methanol electro-oxidation. ACS Appl. Energy Mater. 2020, 3, 9076–9082.

    Article  CAS  Google Scholar 

  12. Shen, J. J.; Li, X. C.; Wan, L.; Liang, K.; Tay, B. K.; Kong, L. B.; Yan, X. B. An asymmetric supercapacitor with both ultra-high gravimetric and volumetric energy density based on 3D Ni(OH)2/MnO2@carbon nanotube and activated polyaniline-derived carbon. ACS Appl. Mater. Interfaces 2017, 9, 668–676.

    Article  CAS  Google Scholar 

  13. Xu, K. B.; Zou, R. J.; Li, W. Y.; Liu, Q.; Liu, X. J.; An, L.; Hu, J. Q. Design and synthesis of 3D interconnected mesoporous NiCo2O4@CoxNi1−x(OH)2 core-shell nanosheet arrays with large areal capacitance and high rate performance for supercapacitors. J. Mater. Chem. A 2014, 2, 10090–10097.

    Article  CAS  Google Scholar 

  14. Tong, Z. X.; Ji, Y. J.; Tian, Q. Z.; Ouyang, W. M. High mass loading and high-density flower-like NiCo2O4 nanosheets on Ni foam for superior capacitance. Chem. Commun. 2019, 55, 9128–9131.

    Article  CAS  Google Scholar 

  15. Xin, B. B.; Zhao, Y. Q.; Xu, C. L. A high mass loading electrode based on ultrathin Co3S4 nanosheets for high performance supercapacitor. J. Solid State Electrochem. 2016, 20, 2197–2205.

    Article  CAS  Google Scholar 

  16. Tang, C. H.; Yin, X. S.; Gong, H. Superior performance asymmetric supercapacitors based on a directly grown commercial mass 3D Co3O4@Ni(OH)2 core-shell electrode. ACS Appl. Mater. Interfaces 2013, 5, 10574–10582.

    Article  CAS  Google Scholar 

  17. Yang, S. R.; Wu, C.; Cai, J. J.; Zhu, Y.; Zhang, H. T.; Lu, Y.; Zhang, K. L. Seed-assisted smart construction of high mass loading Ni-Co-Mn hydroxide nanoflakes for supercapacitor applications. J. Mater. Chem. A 2017, 5, 16776–16785.

    Article  CAS  Google Scholar 

  18. Zhang, X. M.; Su, D. N.; Wu, A. P.; Yan, H. J.; Wang, X. W.; Wang, D. X.; Wang, L.; Tian, C. G.; Sun, L.; Fu, H. G. Porous NiCoP nanowalls as promising electrode with high-area and mass capacitance for supercapacitors. Sci. China Mater. 2019, 62, 1115–1126.

    Article  CAS  Google Scholar 

  19. Huang, Z. H.; Li, X. Q.; Xiang, X. X.; Gao, T. T.; Zhang, Y. J.; Xiao, D. Porous NiCoP in situ grown on Ni foam using molten-salt electrodeposition for asymmetric supercapacitors. J. Mater. Chem. A 2018, 6, 23746–23756.

    Article  CAS  Google Scholar 

  20. Xu, P. P.; Miao, C. X.; Cheng, K.; Ye, K.; Yin, J. L.; Cao, D. X.; Wang, G. L.; Zhang, X. F. Preparation of binder-free porous ultrathin Ni(OH)2 nanoleafs using ZnO as pore forming agent displaying both high mass loading and excellent electrochemical energy storage performance. Electrochim. Acta 2016, 216, 499–509.

    Article  CAS  Google Scholar 

  21. Zhu, Z. Q.; Zhou, Y. N.; Wang, S. Q.; Zhao, C. H.; Li, Z.; Chen, G. R.; Zhao, C. J. Ni counterpart-assisted synthesis of nanoarchitectured Co3O4/CoS/Ni(OH)2@Co electrode for superior supercapacitor. Electrochim. Acta 2018, 284, 444–453.

    Article  CAS  Google Scholar 

  22. Lu, Z. Y.; Yang, Q.; Zhu, W.; Chang, Z.; Liu, J. F.; Sun, X. M.; Evans, D. G.; Duan, X. Hierarchical Co3O4@Ni-Co-O supercapacitor electrodes with ultrahigh specific capacitance per area. Nano Res. 2012, 5, 369–378.

    Article  CAS  Google Scholar 

  23. Tao, K. Y.; Gong, Y.; Lin, J. H. Epitaxial grown self-supporting NiSe/Ni3S2/Ni12P5 vertical nanofiber arrays on Ni foam for high performance supercapacitor: Matched exposed facets and re-distribution of electron density. Nano Energy 2019, 55, 65–81.

    Article  CAS  Google Scholar 

  24. Pan, Z. C.; Jiang, Y. C.; Yang, P. Y.; Wu, Z. Y.; Tian, W. C.; Liu, L.; Song, Y.; Gu, Q. F.; Sun, D. L.; Hu, L. F. In situ growth of layered bimetallic ZnCo hydroxide nanosheets for high-performance all-solidstate pseudocapacitor. ACS Nano 2018, 12, 2968–2979.

    Article  CAS  Google Scholar 

  25. Shang, W. X.; Yu, W. T.; Tan, P.; Chen, B.; Xu, H. R.; Ni, M. A high-performance Zn battery based on self-assembled nanostructured NiCo2O4 electrode. J. Power Sources 2019, 421, 6–13.

    Article  CAS  Google Scholar 

  26. Xu, C.; Liao, J.; Yang, C.; Wang, R. Z.; Wu, D.; Zou, P. C.; Lin, Z. Y.; Li, B. H.; Kang, F. Y.; Wong, C. P. An ultrafast, high capacity and superior longevity Ni/Zn battery constructed on nickel nanowire array film. Nano Energy 2016, 30, 900–908.

    Article  CAS  Google Scholar 

  27. He, Y. P.; Zhang, P. P.; Huang, H.; Li, X. B.; Zhai, X. H.; Chen, B. M.; Guo, Z. C. Engineering sulfur vacancies of Ni3S2 nanosheets as a binder-free cathode for an aqueous rechargeable Ni-Zn battery. ACS Appl. Energy Mater. 2020, 3, 3863–3875.

    Article  CAS  Google Scholar 

  28. Zhang, S. W.; Yin, B. S.; Luo, Y. Z.; Shen, L.; Tang, B. S.; Kou, Z. K.; Liu, X. X.; Lim, D. B. K.; Gu, D. M.; Wang, Z. B. et al. Fabrication and theoretical investigation of cobaltosic sulfide nanosheets for flexible aqueous Zn/Co batteries. Nano Energy 2020, 68, 104314.

    Article  CAS  Google Scholar 

  29. Zhou, W. H.; He, J.; Zhu, D.; Li, J. C.; Chen, Y. G. Hierarchical NiSe2 nanosheet arrays as a robust cathode toward superdurable and ultrafast Ni-Zn aqueous batteries. ACS Appl. Mater. Interfaces 2020, 12, 34931–34940.

    Article  CAS  Google Scholar 

  30. Wen, J.; Feng, Z.; Liu, H. R.; Chen, T.; Yang, Y. Q.; Li, S. Z.; Sheng, S.; Fang, G. J. In-situ synthesized Ni2P nanosheet arrays as the cathode for novel alkaline Ni//Zn rechargeable battery. Appl. Surf. Sci. 2019, 485, 462–467.

    Article  CAS  Google Scholar 

  31. Xie, Y. L.; Fei, B.; Cai, D. P.; Chen, Q. D.; Cui, Z. X.; Wang, Q. T.; Zhan, H. B. Multicomponent hierarchical NiCo2O4@CoMoO4@Co3O4 arrayed structures for high areal energy density aqueous NiCo//Zn batteries. Energy Storage Mater. 2020, 31, 27–35.

    Article  Google Scholar 

  32. Zhou, L. J.; Zeng, S. Q.; Zheng, D. Z.; Zeng, Y. X.; Wang, F. X.; Xu, W.; Liu, J.; Lu, X. H. NiMoO4 nanowires supported on Ni/C nanosheets as high-performance cathode for stable aqueous rechargeable nickel-zinc battery. Chem. Eng. J. 2020, 400, 125832.

    Article  CAS  Google Scholar 

  33. Shen, Y. N.; Zhang, K.; Yang, F.; Li, Z. H.; Cui, Z.; Zou, R. J.; Liu, Q.; Hu, J. Q.; Xu, K. B. Oxygen vacancies-rich cobalt-doped NiMoO4 nanosheets for high energy density and stable aqueous Ni-Zn battery. Sci. China Mater. 2020, 63, 1205–1215.

    Article  CAS  Google Scholar 

  34. Liang, X. Y.; Zou, X. F.; Ren, X. L.; Xiang, B.; Li, W. P.; Chen, F.; Hao, J. Y.; Hu, Q.; Feng, L. Ultrathin nickel manganese nanosheets with rich oxygen-vacancy as a durability electrode for aqueous Ni//Zn batteries. J. Colloid Interface Sci. 2020, 578, 677–684.

    Article  CAS  Google Scholar 

  35. Wang, S. Y.; Lai, S. B.; Li, P. S.; Gao, T. F.; Sun, K.; Ding, X. T.; Xie, T. H.; Wu, C.; Li, X. J.; Kuang, Y. et al. Hierarchical cobalt oxide@Nickel-vanadium layer double hydroxide core/shell nanowire arrays with enhanced areal specific capacity for nickel-zinc batteries. J. Power Sources 2019, 436, 226867.

    Article  CAS  Google Scholar 

  36. Zhu, Z. Q.; Zhang, R. Z.; Lin, J. H.; Zhang, K. F.; Li, N.; Zhao, C. H.; Chen, G. R.; Zhao, C. J. Ni, Zn-codoped MgCo2O4 electrodes for aqueous asymmetric supercapacitor and rechargeable Zn battery. J. Power Sources 2019, 437, 226941.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51772148), Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP, PPZY2015B128) and the Project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiulan Hu or Xiaodong Shen.

Electronic Supplementary Material

12274_2021_3547_MOESM1_ESM.pdf

High mass loading Ni4Co1-OH@CuO core-shell nanowire arrays obtained by electrochemical reconstruction for alkaline energy storage

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Hu, X., Wang, S. et al. High mass loading Ni4Co1-OH@CuO core-shell nanowire arrays obtained by electrochemical reconstruction for alkaline energy storage. Nano Res. 15, 685–693 (2022). https://doi.org/10.1007/s12274-021-3547-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3547-0

Keywords

Navigation