Skip to main content
Log in

High Sensitivity in Ni-Based SPR Sensor of Blue Phosphorene/Transition Metal Dichalcogenides Hybrid Nanostructure

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In the present work, a novel surface plasmon resonance (SPR) sensor consisting of the nickel (Ni) film with hybrid structure of blue phosphorene (BlueP)/transition metal dichalcogenides (TMDCs) is reported. By optimizing the thickness of Ni layer and BlueP/TMDCs, the maximum sensitivity with 270°/RIU for the Ni-BlueP/WS2 is achieved. Use of BlueP/TMDCs layer facilitates the sensitivity due to its high electron concentration, high mobility, optical, and electronic properties. Compared with the conventional Ni-based SPR sensor, the sensitivity of the proposed one is enhanced up to ~ 60.7%. We hope that the SPR sensor has potential application prospects in chemical detection, medical diagnostic, optical sensing, etc. due to its high sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Tabassum R, Kant R (2020) Recent trends in surface plasmon resonance based fiber–optic gas sensors utilizing metal oxides and carbon nanomaterials as functional entities. Sensors Actuators B Chem 310. https://doi.org/10.1016/j.snb.2020.127813

  2. Mishra AK, Mishra SK (2016) Gas sensing in Kretschmann configuration utilizing bi-metallic layer of Rhodium-Silver in visible region. Sensors Actuators B Chem 237:969–973. https://doi.org/10.1016/j.snb.2016.07.041

    Article  CAS  Google Scholar 

  3. Xue T, Qi K, Hu C (2019) Novel SPR sensing platform based on superstructure MoS2 nanosheets for ultrasensitive detection of mercury ion. Sensors Actuators B Chem 284:589–594. https://doi.org/10.1016/j.snb.2019.01.004

    Article  CAS  Google Scholar 

  4. Jena SC, Shrivastava S, Saxena S, Kumar N, Maiti SK, Mishra BP, Singh RK (2019) Surface plasmon resonance immunosensor for label-free detection of BIRC5 biomarker in spontaneously occurring canine mammary tumours. Sci Rep 9(1):13485. https://doi.org/10.1038/s41598-019-49998-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu L, You Q, Shan Y, Gan S, Zhao Y, Dai X, Xiang Y (2018) Few-layer Ti3C2Tx MXene: a promising surface plasmon resonance biosensing material to enhance the sensitivity. Sensors Actuators B Chem 277:210–215. https://doi.org/10.1016/j.snb.2018.08.154

    Article  CAS  Google Scholar 

  6. Wu L, Ling Z, Jiang L, Guo J, Dai X, Xiang Y, Fan D (2016) Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor. IEEE Photonics J 8(2):1–9. https://doi.org/10.1109/jphot.2016.2533923

    Article  Google Scholar 

  7. West PR, Ishii S, Naik GV, Emani NK, Shalaev VM, Boltasseva A (2010) Searching for better plasmonic materials. Laser Photonics Rev 4(6):795–808. https://doi.org/10.1002/lpor.200900055

    Article  CAS  Google Scholar 

  8. Ahmed AM, Shaban M (2020) Highly sensitive Au–Fe2O3–Au and Fe2O3–Au–Fe2O3 biosensors utilizing strong surface plasmon resonance. Appl Phys B 126(4). https://doi.org/10.1007/s00340-020-7405-7

  9. Wang M, Huo Y, Jiang S, Zhang C, Yang C, Ning T, Liu X, Li C, Zhang W, Man B (2017) Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene–WS2 hybrid nanostructures and Au–Ag bimetallic film. RSC Adv 7(75):47177–47182. https://doi.org/10.1039/c7ra08380g

    Article  CAS  Google Scholar 

  10. Mitsushio M, Miyashita K, Higo M (2006) Sensor properties and surface characterization of the metal-deposited SPR optical fiber sensors with Au, Ag, Cu, and Al. Sens Actuators A 125(2):296–303. https://doi.org/10.1016/j.sna.2005.08.019

    Article  CAS  Google Scholar 

  11. Zhao J, Bowman L, Zhang X, Shi X, Jiang B, Castranova V, Ding M (2009) Metallic nickel nano- and fine particles induce JB6 cell apoptosis through a caspase-8/AIF mediated cytochrome c-independent pathway. J Nanobiotechnology 7:2. https://doi.org/10.1186/1477-3155-7-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu W, Wu X, Li X (2017) Gold nanorods on three-dimensional nickel foam: a non-enzymatic glucose sensor with enhanced electro-catalytic performance. RSC Adv 7(58):36744–36749. https://doi.org/10.1039/c7ra06909j

    Article  CAS  Google Scholar 

  13. She H, Li L, Zhou H, Wang L, Huang J, Wang Q (2018) Photocatalytic activation of saturated C-H bond over the CdS mixed-phase under visible light irradiation. Front Chem 6:466. https://doi.org/10.3389/fchem.2018.00466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alwan AM, Yousif AA, Wali LA (2017) The growth of the silver nanoparticles on the mesoporous silicon and macroporous silicon: a comparative study. Indian J Pure Appl Phys (IJPAP) 55(11):813–820

    Google Scholar 

  15. Wali LA, Alwan AM, Dheyab AB, Hashim DA (2019) Excellent fabrication of Pd-Ag NPs/PSi photocatalyst based on bimetallic nanoparticles for improving methylene blue photocatalytic degradation. Optik 179:708–717. https://doi.org/10.1016/j.ijleo.2018.11.011

    Article  CAS  Google Scholar 

  16. AlaguVibisha G, Nayak JK, Maheswari P, Priyadharsini N, Nisha A, Jaroszewicz Z, Rajesh KB, Jha R (2020) Sensitivity enhancement of surface plasmon resonance sensor using hybrid configuration of 2D materials over bimetallic layer of Cu–Ni. Opt Commun 463. https://doi.org/10.1016/j.optcom.2020.125337

  17. Shah K, Sharma NK (2018) SPR based fiber optic sensor utilizing thin film of nickel.

  18. Xu H, Wu L, Dai X, Gao Y, Xiang Y (2016) An ultra-high sensitivity surface plasmon resonance sensor based on graphene-aluminum-graphene sandwich-like structure. J Appl Phys 120(5). https://doi.org/10.1063/1.4959982

  19. Zhao X, Huang T, Ping PS, Wu X, Huang P, Pan J, Wu Y, Cheng Z (2018) Sensitivity Enhancement in Surface Plasmon Resonance Biochemical Sensor Based on Transition Metal Dichalcogenides/Graphene Heterostructure. Sensors (Basel) 18(7). https://doi.org/10.3390/s18072056

  20. Peng Q, Wang Z, Sa B, Wu B, Sun Z (2016) Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Sci Rep 6:31994. https://doi.org/10.1038/srep31994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sharma AK, Pandey AK (2018) Blue phosphorene/MoS2 heterostructure based SPR sensor with enhanced sensitivity. IEEE Photonics Technol Lett 30(7):595–598. https://doi.org/10.1109/lpt.2018.2803747

    Article  CAS  Google Scholar 

  22. Prajapati YK, Srivastava A (2019) Effect of BlueP/MoS2 heterostructure and graphene layer on the performance parameter of SPR sensor: theoretical insight. Superlattices Microstruct 129:152–162. https://doi.org/10.1016/j.spmi.2019.03.016

    Article  CAS  Google Scholar 

  23. Yue C, Lang Y, Zhou X, Liu Q (2019) Sensitivity enhancement of an SPR biosensor with a graphene and blue phosphorene/transition metal dichalcogenides hybrid nanostructure. Appl Opt 58(34):9411–9420. https://doi.org/10.1364/AO.58.009411

    Article  CAS  PubMed  Google Scholar 

  24. Ouyang Q, Zeng S, Jiang L, Hong L, Xu G, Dinh XQ, Qian J, He S, Qu J, Coquet P, Yong KT (2016) Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor. Sci Rep 6:28190. https://doi.org/10.1038/srep28190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shukla S, Sharma NK, Sajal V (2016) Theoretical study of surface plasmon resonance-based fiber optic sensor utilizing cobalt and nickel films. Braz J Phys 46(3):288–293. https://doi.org/10.1007/s13538-016-0406-7

    Article  CAS  Google Scholar 

  26. Kashif M, Bakar AA, Arsad N, Shaari S (2014) Development of phase detection schemes based on surface plasmon resonance using interferometry. Sensors (Basel) 14(9):15914–15938. https://doi.org/10.3390/s140915914

    Article  Google Scholar 

  27. Maharana PK, Jha R, Palei S (2014) Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared. Sensors Actuators B Chem 190:494–501. https://doi.org/10.1016/j.snb.2013.08.089

    Article  CAS  Google Scholar 

  28. Xu Y, Wu L, Ang LK (2019) Surface Exciton Polaritons: A Promising Mechanism for Refractive-Index Sensing. Phys Rev Appl 12(2). https://doi.org/10.1103/PhysRevApplied.12.024029

  29. Wang S, Liu N, Cheng Q, Pang B, Lv J (2020) Surface plasmon resonance on the antimonene–Fe2O3–copper layer for optical attenuated total reflection spectroscopic application. Plasmonics. https://doi.org/10.1007/s11468-020-01309-1

    Article  Google Scholar 

  30. Maharana PK, Srivastava T, Jha R (2014) On the performance of highly sensitive and accurate graphene-on-aluminum and silicon-based SPR biosensor for visible and near infrared. Plasmonics 9(5):1113–1120. https://doi.org/10.1007/s11468-014-9721-4

    Article  CAS  Google Scholar 

  31. Rahman MS, Hasan MR, Rikta KA, Anower MS (2018) A novel graphene coated surface plasmon resonance biosensor with tungsten disulfide (WS2) for sensing DNA hybridization. Opt Mater 75:567–573. https://doi.org/10.1016/j.optmat.2017.11.013

    Article  CAS  Google Scholar 

  32. Pal S, Verma A, Raikwar S, Prajapati YK, Saini JP (2018) Detection of DNA hybridization using graphene-coated black phosphorus surface plasmon resonance sensor. Appl Phys A 124(5). https://doi.org/10.1007/s00339-018-1804-1

  33. Lin Z, Jiang L, Wu L, Guo J, Dai X, Xiang Y, Fan D (2016) Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au-MoS 2-Au films. IEEE Photonics J 8(6):1–8. https://doi.org/10.1109/jphot.2016.2631407

    Article  CAS  Google Scholar 

  34. Wu L, Jia Y, Jiang L, Guo J, Dai X, Xiang Y, Fan D (2017) Sensitivity improved SPR biosensor based on the MoS2/graphene–aluminum hybrid structure. J Lightwave Technol 35(1):82–87. https://doi.org/10.1109/jlt.2016.2624982

    Article  CAS  Google Scholar 

  35. Han L, He X, Ge L, Huang T, Ding H, Wu C (2019) Comprehensive study of SPR biosensor performance based on metal-ITO-graphene/TMDC hybrid multilayer. Plasmonics 14(6):2021–2030. https://doi.org/10.1007/s11468-019-01004-w

    Article  CAS  Google Scholar 

Download references

Funding

This work is partially supported by the National Natural Science Foundation of China (NSFC) (61771419) and Hebei Province Innovation Foundation for Postgraduate (CXZZSS2020051).

Author information

Authors and Affiliations

Authors

Contributions

Methodology and writing—original draft preparation, Na Liu; financial support, Shutao Wang; software and figure, Qi Cheng and Bo Pang; review and editing, Jiangtao Lv. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Shutao Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Wang, S., Cheng, Q. et al. High Sensitivity in Ni-Based SPR Sensor of Blue Phosphorene/Transition Metal Dichalcogenides Hybrid Nanostructure. Plasmonics 16, 1567–1576 (2021). https://doi.org/10.1007/s11468-021-01421-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01421-w

Keywords

Navigation