Skip to main content
Log in

Recent advances in memristors based on two-dimensional ferroelectric materials

  • Topical Review
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

In this big data era, the explosive growth of information puts ultra-high demands on the data storage/computing, such as high computing power, low energy consumption, and excellent stability. However, facing this challenge, the traditional von Neumann architecture-based computing system is out of its depth owing to the separated memory and data processing unit architecture. One of the most effective ways to solve this challenge is building brain inspired computing system with in-memory computing and parallel processing ability based on neuromorphic devices. Therefore, there is a research trend toward the memristors, that can be applied to build neuromorphic computing systems due to their large switching ratio, high storage density, low power consumption, and high stability. Two-dimensional (2D) ferroelectric materials, as novel types of functional materials, show great potential in the preparations of memristors because of the atomic scale thickness, high carrier mobility, mechanical flexibility, and thermal stability. 2D ferroelectric materials can realize resistive switching (RS) because of the presence of natural dipoles whose direction can be flipped with the change of the applied electric field thus producing different polarizations, therefore, making them powerful candidates for future data storage and computing. In this review article, we introduce the physical mechanisms, characterizations, and synthetic methods of 2D ferroelectric materials, and then summarize the applications of 2D ferroelectric materials in memristors for memory and synaptic devices. At last, we deliberate the advantages and future challenges of 2D ferroelectric materials in the application of memristors devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ajayan, D. Nirmal, B. K. Jebalin I. V, and S. Sreejith, Advances in neuromorphic devices for the hardware implementation of neuromorphic computing systems for future artificial intelligence applications: A critical review, Microelectron. J. 130, 105634 (2022)

    Article  Google Scholar 

  2. B. Sun, S. Ranjan, G. Zhou, T. Guo, Y. Xia, L. Wei, Y. N. Zhou, and Y. A. Wu, Multistate resistive switching behaviors for neuromorphic computing in memristor, Mater. Today Adv. 9, 100125 (2021)

    Article  Google Scholar 

  3. K. Sun, J. Chen, and X. Yan, The future of memristors: Materials engineering and neural networks, Adv. Funct. Mater. 31(8), 2006773 (2021)

    Article  Google Scholar 

  4. D. Misra, Special issue of Interface on Neuromorphic Computing: An introduction and state of the field, Electrochem. Soc. Interface 32(1), 45 (2023)

    Article  Google Scholar 

  5. D. Ielmini, Z. Wang, and Y. Liu, Brain-inspired computing via memory device physics, APL Mater. 9(5), 050702 (2021)

    Article  ADS  Google Scholar 

  6. J. Q. Yang, R. Wang, Y. Ren, J. Y. Mao, Z. P. Wang, Y. Zhou, and S. T. Han, Neuromorphic engineering: From biological to spike-based hardware nervous systems, Adv. Mater. 32(52), 2003610 (2020)

    Article  Google Scholar 

  7. L. Wang, X. Shen, Z. Gao, J. Fu, S. Yao, L. Cheng, and X. Lian, Review of applications of 2D materials in memristive neuromorphic circuits, J. Mater. Sci. 57(8), 4915 (2022)

    Article  ADS  Google Scholar 

  8. Z. Wang, L. Wang, M. Nagai, L. Xie, M. Yi, and W. Huang, Nanoionics-enabled memristive devices: Strategies and materials for neuromorphic applications, Adv. Electron. Mater. 3(7), 1600510 (2017)

    Article  Google Scholar 

  9. C. Gao, M. P. Lee, M. Li, K. C. Lee, F. S. Yang, C. Y. Lin, K. Watanabe, T. Taniguchi, P. W. Chiu, C. H. Lien, W. W. Wu, S. P. Lin, W. Li, Y. F. Lin, and J. Chu, Mimic drug dosage modulation for neuroplasticity based on charge-trap layered electronics, Adv. Funct. Mater. 31(5), 2005182 (2021)

    Article  Google Scholar 

  10. X. Wang, Z. Shang, C. Zhang, J. Kang, T. Liu, X. Wang, S. Chen, H. Liu, W. Tang, Y. J. Zeng, J. Guo, Z. Cheng, L. Liu, D. Pan, S. Tong, B. Wu, Y. Xie, G. Wang, J. Deng, T. Zhai, H. X. Deng, J. Hong, and J. Zhao, Electrical and magnetic anisotropies in van der Waals multiferroic CuCrP2S6, Nat. Commun. 14(1), 840 (2023)

    Article  ADS  Google Scholar 

  11. R. Lin, G. Shi, F. Qiao, C. Wang, and S. Wu, Research progress and applications of memristor emulator circuits, Microelectron. J. 133, 105702 (2023)

    Article  Google Scholar 

  12. Y. Zuo, H. Lin, J. Guo, Y. Yuan, H. He, Y. Li, Y. Xiao, X. Li, K. Zhu, T. Wang, X. Jing, C. Wen, and M. Lanza, Effect of the pressure exerted by probe station tips in the electrical characteristics of memristors, Adv. Electron. Mater. 6(3), 1901226 (2020)

    Article  Google Scholar 

  13. O. Vaughan, A history of memristors in five covers, Nat. Electron. 6(1), 7 (2023)

    Article  Google Scholar 

  14. L. Chua, Memristor—The missing circuit element, IEEE Transactions on Circuit Theory 18(5), 507 (1971)

    Article  Google Scholar 

  15. S. Yan, J. Zang, P. Xu, Y. Zhu, G. Li, Q. Chen, Z. Chen, Y. Zhang, M. Tang, and X. Zheng, Recent progress in ferroelectric synapses and their applications, Sci. China Mater. 66(3), 877 (2023)

    Article  Google Scholar 

  16. W. Chen, L. Song, S. Wang, Z. Zhang, G. Wang, G. Hu, and S. Gao, Essential characteristics of memristors for neuromorphic computing, Adv. Electron. Mater. 9(2), 2200833 (2022)

    Article  Google Scholar 

  17. S. H. Sung, Y. Jeong, J. W. Oh, H. J. Shin, J. H. Lee, and K. J. Lee, Bio-plausible memristive neural components towards hardware implementation of brain-like intelligence, Mater. Today 62, 251 (2023)

    Article  Google Scholar 

  18. F. Yuan and Y. Li, A chaotic circuit constructed by a memristor, a memcapacitor and a meminductor, Chaos 29(10), 101101 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Z. Biolek, D. Biolek, V. Biolková, Z. Kolka, A. Ascoli, and R. Tetzlaff, Analysis of memristors with nonlinear memristance versus state maps, Int. J. Circuit Theory Appl. 45(11), 1814 (2017)

    Article  MATH  Google Scholar 

  20. M. Di Ventra, Y. V. Pershin, and L. O. Chua, Circuit elements with memory: Memristors, memcapacitors, and meminductors, Proc. IEEE 97(10), 1717 (2009)

    Article  Google Scholar 

  21. S. G. Kim, J. S. Han, H. Kim, S. Y. Kim, and H. W. Jang, Recent advances in memristive materials for artificial synapses, Adv. Mater. Technol. 3(12), 1800457 (2018)

    Article  Google Scholar 

  22. X. Yan, H. Yan, G. Liu, J. Zhao, Z. Zhao, H. Wang, H. He, M. Hao, Z. Li, L. Wang, W. Wang, Z. Jian, J. Li, and J. Chen, Silicon-based epitaxial ferroelectric memristor for high temperature operation in self-assembled vertically aligned BaTiO3−CeO2 films, Nano Res. 15(10), 9654 (2022)

    Article  ADS  Google Scholar 

  23. Z. Liu, H. Wang, M. Li, L. Tao, T. R. Paudel, H. Yu, Y. Wang, S. Hong, M. Zhang, Z. Ren, Y. Xie, E. Y. Tsymbal, J. Chen, Z. Zhang, and H. Tian, In-plane charged domain walls with memristive behaviour in a ferroelectric film, Nature 613(7945), 656 (2023)

    Article  ADS  Google Scholar 

  24. X. Yan, X. Jia, Y. Zhang, S. Shi, L. Wang, Y. Shao, Y. Sun, S. Sun, Z. Zhao, J. Zhao, J. Sun, Z. Guo, Z. Guan, Z. Zhang, X. Han, and J. Chen, A low-power Si:HfO2 ferroelectric tunnel memristor for spiking neural networks, Nano Energy 107, 108091 (2023)

    Article  Google Scholar 

  25. Y. W. Fang, Z. J. Yang, R. Y. Liao, P. T. Chen, C. B. Liu, K. Y. Huang, H. H. Hsu, C. H. Cheng, W. C. Chou, S. H. Lin, and Y. Zhou, Electrical characteristics investigation of ferroelectric memories using stacked and mixed hafnium zirconium oxides, Thin Solid Films 757, 139395 (2022)

    Article  ADS  Google Scholar 

  26. F. S. Yang, M. Li, M. P. Lee, I. Y. Ho, J. Y. Chen, H. Ling, Y. Li, J. K. Chang, S. H. Yang, Y. M. Chang, K. C. Lee, Y. C. Chou, C. H. Ho, W. Li, C. H. Lien, and Y. F. Lin, Oxidation-boosted charge trapping in ultrasensitive van der Waals materials for artificial synaptic features, Nat. Commun. 11(1), 2972 (2020)

    Article  ADS  Google Scholar 

  27. L. Yin, R. Cheng, Y. Wen, B. Zhai, J. Jiang, H. Wang, C. Liu, and J. He, High-performance memristors based on ultrathin 2D copper chalcogenides, Adv. Mater. 34(9), 2108313 (2022)

    Article  Google Scholar 

  28. F. Qian, R. S. Chen, R. Wang, J. Wang, P. Xie, J. Y. Mao, Z. Lv, S. Ye, J. Q. Yang, Z. Wang, Y. Zhou, and S. T. Han, A leaky integrate-and-fire neuron based on hexagonal boron nitride (h-BN) monocrystalline memristor, IEEE Trans. Electron Dev. 69(11), 6049 (2022)

    Article  ADS  Google Scholar 

  29. Z. P. Wang, P. Xie, J. Y. Mao, R. Wang, J. Q. Yang, Z. Feng, Y. Zhou, C. C. Kuo, and S. T. Han, The floating body effect of a WSe2 transistor with volatile memory performance, Mater. Horiz. 9(7), 1878 (2022)

    Article  Google Scholar 

  30. Z. Wang, W. Wang, P. Liu, G. Liu, J. Li, J. Zhao, Z. Zhou, J. Wang, Y. Pei, Z. Zhao, J. Li, L. Wang, Z. Jian, Y. Wang, J. Guo, and X. Yan, Superlow power consumption artificial synapses based on WSe2 quantum dots memristor for neuromorphic computing, Research 2022, 9754876 (2022)

    Article  ADS  Google Scholar 

  31. B. Cheng, Z. Lei, and P. Wu, Bio-derived crystalline silk nanosheets for versatile macroscopic assemblies, Nano Res. 15(6), 5538 (2022)

    Article  ADS  Google Scholar 

  32. W. Lee, Z. Zhou, X. Chen, N. Qin, J. Jiang, K. Liu, M. Liu, T. H. Tao, and W. Li, A rewritable optical storage medium of silk proteins using near-field nano-optics, Nat. Nanotechnol. 15(11), 941 (2020)

    Article  ADS  Google Scholar 

  33. M. Z. Li, L. C. Guo, G. L. Ding, K. Zhou, Z. Y. Xiong, S. T. Han, and Y. Zhou, Inorganic perovskite quantum dot-based strain sensors for data storage and in-sensor computing, ACS Appl. Mater. Interfaces 13(26), 30861 (2021)

    Article  Google Scholar 

  34. X. F. Cheng, W. H. Qian, J. Wang, C. Yu, J. H. He, H. Li, Q. F. Xu, D. Y. Chen, N. J. Li, and J. M. Lu, Environmentally robust memristor enabled by lead-free double perovskite for high-performance information storage, Small 15(49), 1905731 (2019)

    Article  Google Scholar 

  35. Q. Liu, W. Yue, Y. Li, W. Wang, L. Xu, Y. Wang, S. Gao, C. Zhang, H. Kan, and C. Li, Multifunctional optoelectronic random access memory device based on surface-plasma-treated inorganic halide perovskite, Adv. Electron. Mater. 7(7), 2100366 (2021)

    Article  Google Scholar 

  36. X. Zhu, Q. Wang, and W. D. Lu, Memristor networks for real-time neural activity analysis, Nat. Commun. 11(1), 2439 (2020)

    Article  ADS  Google Scholar 

  37. J. Zhao, W. Li, X. Wang, X. Wei, H. Zhu, W. Qu, D. Men, Z. Gao, B. Wei, H. Gao, and Y. Wu, Organic memristor based on high planar cyanostilbene/polymer composite films, Chem. Res. Chin. Univ. 39(1), 121 (2023)

    Article  Google Scholar 

  38. Z. Feng, M. Comí, Y. Ren, D. Sredojević, S. Attar, J. Yang, Z. Wang, R. S. Chen, S. T. Han, M. Al-Hashimi, and Y. Zhou, Organic memory devices and synaptic simulation based on indacenodithienothiophene (IDTT) copolymers with improved planarity, J. Mater. Chem. C 10(43), 16604 (2022)

    Article  Google Scholar 

  39. W. Wang, G. Zhou, Y. Wang, B. Yan, B. Sun, S. Duan, and Q. Song, Multiphotoconductance levels of the organic semiconductor of polyimide-based memristor induced by interface charges, J. Phys. Chem. Lett. 13(42), 9941 (2022)

    Article  Google Scholar 

  40. L. Qi, S. Ruan, and Y. J. Zeng, Review on recent developments in 2D ferroelectrics: Theories and applications, Adv. Mater. 33(13), 2005098 (2021)

    Article  Google Scholar 

  41. C. Wang, L. You, D. Cobden, and J. Wang, Towards two-dimensional van der Waals ferroelectrics, Nat. Mater. 22(5), 542 (2023)

    Article  ADS  Google Scholar 

  42. J. Wang, J. Lou, J. F. Wang, S. B. Qu, H. L. Du, and T. J. Cui, Ferroelectric composite artificially-structured functional material: Multifield control for tunable functional devices, J. Phys. D 55(30), 303002 (2022)

    Article  ADS  Google Scholar 

  43. C. Yang, C. Wang, and Z. Cheng, Editorial for the special issue “Nanoscale ferroic materials — ferroelectric, piezoelectric, magnetic, and multiferroic materials”, Nanomaterials (Basel) 12(17), 2951 (2022)

    Article  Google Scholar 

  44. L. W. Martin and A. M. Rappe, Thin-film ferroelectric materials and their applications, Nat. Rev. Mater. 2(2), 16087 (2016)

    Article  ADS  Google Scholar 

  45. K. Geirhos, S. Reschke, S. Ghara, S. Krohns, P. Lunkenheimer, and I. Kézsmárki, Optical, dielectric, and magnetoelectric properties of ferroelectric and antiferroelectric lacunar spinels, Phys. Status Solidi B 259(5), 2100160 (2022)

    Article  ADS  Google Scholar 

  46. F. Xue, X. He, W. Liu, D. Periyanagounder, C. Zhang, M. Chen, C. H. Lin, L. Luo, E. Yengel, V. Tung, T. D. Anthopoulos, L. J. Li, J. H. He, and X. Zhang, Optoelectronic ferroelectric domain-wall memories made from a single van der Waals ferroelectric, Adv. Funct. Mater. 30(52), 2004206 (2020)

    Article  Google Scholar 

  47. J. Nam, H. Lee, M. Lee, and J. H. Lee, Nonvolatile balanced ternary memory based on the multiferroelectric material GeSnTe2, J. Phys. Chem. Lett. 10(23), 7470 (2019)

    Article  Google Scholar 

  48. D. Zhao, T. Lenz, G. H. Gelinck, P. Groen, D. Damjanovic, D. M. de Leeuw, and I. Katsouras, Depolarization of multidomain ferroelectric materials, Nat. Commun. 10(1), 2547 (2019)

    Article  ADS  Google Scholar 

  49. S. Baek, H. H. Yoo, J. H. Ju, P. Sriboriboon, P. Singh, J. Niu, J. H. Park, C. Shin, Y. Kim, and S. Lee, Ferroelectric field-effect-transistor integrated with ferroelectrics heterostructure, Adv. Sci. (Weinh.) 9(21), 2200566 (2022)

    Google Scholar 

  50. A. I. Khan, A. Keshavarzi, and S. Datta, The future of ferroelectric field-effect transistor technology, Nat. Electron. 3(10), 588 (2020)

    Article  Google Scholar 

  51. C. Cui, F. Xue, W. J. Hu, and L. J. Li, Two-dimensional materials with piezoelectric and ferroelectric functionalities, npj 2D Mater. Appl. 2(1), 18 (2018)

    Article  Google Scholar 

  52. M. Dai, Z. Wang, F. Wang, Y. Qiu, J. Zhang, C. Y. Xu, T. Zhai, W. Cao, Y. Fu, D. Jia, Y. Zhou, and P. A. Hu, Two-dimensional van der Waals materials with aligned in-plane polarization and large piezoelectric effect for self-powered piezoelectric sensors, Nano Lett. 19(8), 5410 (2019)

    Article  ADS  Google Scholar 

  53. D. Zhang, H. Wu, C. R. Bowen, and Y. Yang, Recent advances in pyroelectric materials and applications, Small 17(51), 2103960 (2021)

    Article  Google Scholar 

  54. J. Jiang, L. Zhang, C. Ming, H. Zhou, P. Bose, Y. Guo, Y. Hu, B. Wang, Z. Chen, R. Jia, S. Pendse, Y. Xiang, Y. Xia, Z. Lu, X. Wen, Y. Cai, C. Sun, G. C. Wang, T. M. Lu, D. Gall, Y. Y. Sun, N. Koratkar, E. Fohtung, Y. Shi, and J. Shi, Giant pyroelectricity in nanomembranes, Nature 607(7919), 480 (2022)

    Article  ADS  Google Scholar 

  55. Y. Li, J. Fu, X. Mao, C. Chen, H. Liu, M. Gong, and H. Zeng, Enhanced bulk photovoltaic effect in two-dimensional ferroelectric CuInP2S6, Nat. Commun. 12(1), 5896 (2021)

    Article  ADS  Google Scholar 

  56. D. Wu, C. Guo, L. Zeng, X. Ren, Z. Shi, L. Wen, Q. Chen, M. Zhang, X. J. Li, C. X. Shan, and J. Jie, Phase-controlled van der Waals growth of wafer-scale 2D MoTe2 layers for integrated high-sensitivity broadband infrared photodetection, Light Sci. Appl. 12(1), 5 (2023)

    Article  ADS  Google Scholar 

  57. K. Tang, Y. Wang, C. Gong, C. Yin, M. Zhang, X. Wang, and J. Xiong, Electronic and photoelectronic memristors based on 2D materials, Adv. Electron. Mater. 8(4), 2101099 (2022)

    Article  Google Scholar 

  58. H. Duan, S. Cheng, L. Qin, X. Zhang, B. Xie, Y. Zhang, and W. Jie, Low-power memristor based on two-dimensional materials, J. Phys. Chem. Lett. 13(31), 7130 (2022)

    Article  Google Scholar 

  59. Z. M. Tsikriteas, J. I. Roscow, C. R. Bowen, and H. Khanbareh, Flexible ferroelectric wearable devices for medical applications, iScience 24(1), 101987 (2021)

    Article  ADS  Google Scholar 

  60. X. Mao, J. Fu, C. Chen, Y. Li, H. Liu, M. Gong, and H. Zeng, Nonvolatile electric control of exciton complexes in monolayer MoSe2 with two-dimensional ferroelectric CuInP2S6, ACS Appl. Mater. Interfaces 13(20), 24250 (2021)

    Article  Google Scholar 

  61. K. Chang, J. Liu, H. Lin, N. Wang, K. Zhao, A. Zhang, F. Jin, Y. Zhong, X. Hu, W. Duan, Q. Zhang, L. Fu, Q. K. Xue, X. Chen, and S. H. Ji, Discovery of robust in-plane ferroelectricity in atomic-thick SnTe, Science 353(6296), 274 (2016)

    Article  ADS  Google Scholar 

  62. C. C. Chiang, V. Ostwal, P. Wu, C. S. Pang, F. Zhang, Z. Chen, and J. Appenzeller, Memory applications from 2D materials, Appl. Phys. Rev. 8(2), 021306 (2021)

    Article  ADS  Google Scholar 

  63. L. Wang, X. Wang, Y. Zhang, R. Li, T. Ma, K. Leng, Z. Chen, I. Abdelwahab, and K. P. Loh, Exploring ferroelectric switching in α-In2Se3 for neuromorphic computing, Adv. Funct. Mater. 30(45), 2004609 (2020)

    Article  Google Scholar 

  64. Y. Liu, W. Zhou, G. Tang, C. Yang, X. Wang, and J. Hong, Coexistence of magnetism and ferroelectricity in 3D transition-metal-doped SnTe monolayer, J. Phys. Chem. C 123(47), 28919 (2019)

    Article  Google Scholar 

  65. T. Li, J. Cao, H. Gao, Z. Wang, M. Geiwitz, K. S. Burch, and X. Ling, Epitaxial atomic substitution for MoS2−MoN heterostructure synthesis, ACS Appl. Mater. Interfaces 14(51), 57144 (2022)

    Article  Google Scholar 

  66. H. Qiao, C. Wang, W. S. Choi, M. H. Park, and Y. Kim, Ultra-thin ferroelectrics, Mater. Sci. Eng. Rep. 145, 100622 (2021)

    Article  Google Scholar 

  67. R. K. Vasudevan, N. Balke, P. Maksymovych, S. Jesse, and S. V. Kalinin, Ferroelectric or non-ferroelectric: Why so many materials exhibit “ferroelectricity” on the nanoscale, Appl. Phys. Rev. 4(2), 021302 (2017)

    Article  ADS  Google Scholar 

  68. B. Jiang, J. Iocozzia, L. Zhao, H. Zhang, Y. W. Harn, Y. Chen, and Z. Lin, Barium titanate at the nanoscale: controlled synthesis and dielectric and ferroelectric properties, Chem. Soc. Rev. 48(4), 1194 (2019)

    Article  Google Scholar 

  69. C. Zhao, Y. Huang, and J. Wu, Multifunctional barium titanate ceramics via chemical modification tuning phase structure, InfoMat 2(6), 1163 (2020)

    Article  Google Scholar 

  70. T. Mikolajick, M. H. Park, L. Begon-Lours, and S. Slesazeck, From ferroelectric material optimization to neuromorphic devices, Adv. Mater. 35(27), 2206042 (2022)

    Google Scholar 

  71. M. Wu, 100 years of ferroelectricity, Nat. Rev. Phys. 3(11), 726 (2021)

    Article  Google Scholar 

  72. H. Sun, J. Gu, Y. Li, T. R. Paudel, D. Liu, J. Wang, Y. Zang, C. Gu, J. Yang, W. Sun, Z. Gu, E. Y. Tsymbal, J. Liu, H. Huang, D. Wu, and Y. Nie, Prominent size effects without a depolarization field observed in ultrathin ferroelectric oxide membranes, Phys. Rev. Lett. 130(12), 126801 (2023)

    Article  ADS  Google Scholar 

  73. X. Jia, R. Guo, B. K. Tay, and X. Yan, Flexible ferroelectric devices: Status and applications, Adv. Funct. Mater. 32(45), 2205933 (2022)

    Article  Google Scholar 

  74. D. Zhang, P. Schoenherr, P. Sharma, and J. Seidel, Ferroelectric order in van der Waals layered materials, Nat. Rev. Mater. 8(1), 25 (2022)

    Article  ADS  Google Scholar 

  75. Z. L. Yuan, Y. Sun, D. Wang, K. Q. Chen, and L. M. Tang, A review of ultra-thin ferroelectric films, J. Phys.: Condens. Matter 33(40), 403003 (2021)

    Google Scholar 

  76. J. Y. Li, H. D. Li, X. B. Niu, and Z. M. Wang, Low-dimensional In2Se3 compounds: From material preparations to device applications, ACS Nano 15(12), 18683 (2021)

    Article  Google Scholar 

  77. H. Yang, M. Q. Xiao, Y. Cui, L. F. Pan, K. Zhao, and Z. M. Wei, Nonvolatile memristor based on heterostructure of 2D room-temperature ferroelectric alpha-In2Se3 and WSe2, Sci. China Inform. Sci. 62(12), 220404 (2019)

    Article  Google Scholar 

  78. S. Zhou, L. You, H. Zhou, Y. Pu, Z. Gui, and J. Wang, Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications, Front. Phys. 16(1), 13301 (2021)

    Article  ADS  Google Scholar 

  79. D. Zhang, Z. D. Luo, Y. Yao, P. Schoenherr, C. Sha, Y. Pan, P. Sharma, M. Alexe, and J. Seidel, Anisotropic ion migration and electronic conduction in van der Waals ferroelectric CuInP2S6, Nano Lett. 21(2), 995 (2021)

    Article  ADS  Google Scholar 

  80. B. Lin, A. Chaturvedi, J. Di, L. You, C. Lai, R. Duan, J. Zhou, B. Xu, Z. Chen, P. Song, J. Peng, B. Ma, H. Liu, P. Meng, G. Yang, H. Zhang, Z. Liu, and F. Liu, Ferroelectric-field accelerated charge transfer in 2D CuInP2S6 heterostructure for enhanced photocatalytic H2 evolution, Nano Energy 76, 104972 (2020)

    Article  Google Scholar 

  81. A. Jindal, A. Saha, Z. Li, T. Taniguchi, K. Watanabe, J. C. Hone, T. Birol, R. M. Fernandes, C. R. Dean, A. N. Pasupathy, and D. A. Rhodes, Coupled ferroelectricity and superconductivity in bilayer Td−MoTe2, Nature 613(7942), 48 (2023)

    Article  ADS  Google Scholar 

  82. F. Ahmed, A. M. Shafi, D. M. A. Mackenzie, M. A. Qureshi, H. A. Fernandez, H. H. Yoon, M. G. Uddin, M. Kuittinen, Z. Sun, and H. Lipsanen, Multilayer MoTe2 field-effect transistor at high temperatures, Adv. Mater. Interfaces 8(22), 2100950 (2021)

    Article  Google Scholar 

  83. M. R. Sokolov, K. A. Tumbinskiy, A. I. Zvyagina, I. N. Senchikhin, A. A. Averin, A. E. Aleksandrov, A. R. Tameev, A. A. Ezhov, and M. A. Kalinina, A new 2-methylimidazole-assisted liquid-exfoliation method for a rapid scalable fabrication of chemically pure MoS2 nanosheets, Colloid Interface Sci. Commun. 47, 100604 (2022)

    Article  Google Scholar 

  84. S. N. Shirodkar and U. V. Waghmare, Emergence of ferroelectricity at a metal−semiconductor transition in a 1T monolayer of MoS2, Phys. Rev. Lett. 112(15), 157601 (2014)

    Article  ADS  Google Scholar 

  85. S. Kumar, A. Sharma, Y. T. Ho, A. Pandey, M. Tomar, A. K. Kapoor, E. Y. Chang, and V. Gupta, High performance UV photodetector based on MoS2 layers grown by pulsed laser deposition technique, J. Alloys Compd. 835, 155222 (2020)

    Article  Google Scholar 

  86. X. Zhu, D. Li, X. Liang, and W. D. Lu, Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing, Nat. Mater. 18(2), 141 (2019)

    Article  Google Scholar 

  87. Y. Sun, G. Niu, W. Ren, X. Meng, J. Zhao, W. Luo, Z. G. Ye, and Y. H. Xie, Hybrid system combining two-dimensional materials and ferroelectrics and its application in photodetection, ACS Nano 15(7), 10982 (2021)

    Article  Google Scholar 

  88. Y. T. Huang, N. K. Chen, Z. Z. Li, X. P. Wang, H. B. Sun, S. Zhang, and X. B. Li, Two-dimensional In2Se3: A rising advanced material for ferroelectric data storage, InfoMat 4(8) (2022)

    Google Scholar 

  89. C. Chen, H. Liu, Q. Lai, X. Mao, J. Fu, Z. Fu, and H. Zeng, Large-scale domain engineering in two-dimensional ferroelectric CuInP2S6 via giant flexoelectric effect, Nano Lett. 22(8), 3275 (2022)

    Article  ADS  Google Scholar 

  90. C. Cui, W. J. Hu, X. Yan, C. Addiego, W. Gao, Y. Wang, Z. Wang, L. Li, Y. Cheng, P. Li, X. Zhang, H. N. Alshareef, T. Wu, W. Zhu, X. Pan, and L. J. Li, Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3, Nano Lett. 18(2), 1253 (2018)

    Article  ADS  Google Scholar 

  91. J. Yang, J. Zhou, J. Lu, Z. Luo, J. Yang, and L. Shen, Giant tunnelling electroresistance through 2D sliding ferroelectric materials, Mater. Horiz. 9(5), 1422 (2022)

    Article  Google Scholar 

  92. L. Li and M. Wu, Binary compound bilayer and multilayer with vertical polarizations: Two-dimensional ferroelectrics, multiferroics, and nanogenerators, ACS Nano 11(6), 6382 (2017)

    Article  Google Scholar 

  93. M. V. Stern, Y. Waschitz, W. Cao, I. Nevo, K. Watanabe, T. Taniguchi, E. Sela, M. Urbakh, O. Hod, and M. B. Shalom, Interfacial ferroelectricity by van der Waals sliding, Science 372(6549), 1462 (2021)

    Article  ADS  Google Scholar 

  94. X. Hao, H. Wang, and H. Zhang, Engineering application of nanomaterial and ferroelectric domain polarization to the dynamic structure of the surrounding rock of heavy-duty railway with small clear intersection tunnel, Adv. Mater. Sci. Eng. 2023, 8354167 (2023)

    Article  Google Scholar 

  95. J. Schultheiß, G. Picht, J. Wang, Y. A. Genenko, L. Q. Chen, J. E. Daniels, and J. Koruza, Ferroelectric polycrystals: Structural and microstructural levers for property-engineering via domain-wall dynamics, Prog. Mater. Sci. 136, 101101 (2023)

    Article  Google Scholar 

  96. C. Weymann, C. Lichtensteiger, S. Fernandez-Peña, A. B. Naden, L. R. Dedon, L. W. Martin, J. M. Triscone, and P. Paruch, Full control of polarization in ferroelectric thin films using growth temperature to modulate defects, Adv. Electron. Mater. 6(12), 2000852 (2020)

    Article  Google Scholar 

  97. W. Wang, J. Li, H. Liu, and S. Ge, Advancing versatile ferroelectric materials toward biomedical applications, Adv. Sci. (Weinh.) 8(1), 2003074 (2021)

    Google Scholar 

  98. W. Ding, J. Lu, X. Tang, L. Kou, and L. Liu, Ferroelectric materials and their applications in activation of small molecules, ACS Omega 8(7), 6164 (2023)

    Article  Google Scholar 

  99. Y. Guo, H. Zhu, and Q. Wang, Piezoelectric effects in surface-engineered two-dimensional group III nitrides, ACS Appl. Mater. Interfaces 11(1), 1033 (2019)

    Article  Google Scholar 

  100. I. Katsouras, K. Asadi, M. Li, T. B. van Driel, K. S. Kjaer, D. Zhao, T. Lenz, Y. Gu, P. W. Blom, D. Damjanovic, M. Nielsen, and D. M. de Leeuw, The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride), Nat. Mater. 15(1), 78 (2016)

    Article  ADS  Google Scholar 

  101. M. M. Yang, Z. D. Luo, Z. Mi, J. Zhao, S. P. E, and M. Alexe, Piezoelectric and pyroelectric effects induced by interface polar symmetry, Nature 584(7821), 377 (2020)

    Article  Google Scholar 

  102. P. Kumbhakar, C. C. Gowda, and C. S. Tiwary, Advance optical properties and emerging applications of 2D materials, Front. Mater. 8, 721514 (2021)

    Article  Google Scholar 

  103. J. An, X. Zhao, Y. Zhang, M. Liu, J. Yuan, X. Sun, Z. Zhang, B. Wang, S. Li, and D. Li, Perspectives of 2D materials for optoelectronic integration, Adv. Funct. Mater. 32(14), 2110119 (2021)

    Article  Google Scholar 

  104. Q. Qian, J. Lei, J. Wei, Z. Zhang, G. Tang, K. Zhong, Z. Zheng, and K. J. Chen, 2D materials as semiconducting gate for field-effect transistors with inherent over-voltage protection and boosted ON-current, npj 2D Mater. Appl. 3, 24 (2019)

    Article  Google Scholar 

  105. T. Afaneh, P. K. Sahoo, I A P. Nobrega, Y. Xin, and H. R. Gutiérrez, Laser-assisted chemical modification of monolayer transition metal dichalcogenides, Adv. Funct. Mater. 28(37), 1802949 (2018)

    Article  Google Scholar 

  106. V. Shautsova, S. Sinha, L. Hou, Q. Zhang, M. Tweedie, Y. Lu, Y. Sheng, B. F. Porter, H. Bhaskaran, and J. H. Warner, Direct laser patterning and phase transformation of 2D PdSe2 films for on-demand device fabrication, ACS Nano 13(12), 14162 (2019)

    Article  Google Scholar 

  107. G. G. Naumis, S. Barraza-Lopez, M. Oliva-Leyva, and H. Terrones, Electronic and optical properties of strained graphene and other strained 2D materials: A review, Rep. Prog. Phys. 80(9), 096501 (2017)

    Article  ADS  Google Scholar 

  108. H. Qiu, W. Zhou, and W. Guo, Nanopores in graphene and other 2D materials: A decade’s journey toward sequencing, ACS Nano 15(12), 18848 (2021)

    Article  Google Scholar 

  109. H. Ju, Y. Lee, K. T. Kim, I. H. Choi, C. J. Roh, S. Son, P. Park, J. H. Kim, T. S. Jung, J. H. Kim, K. H. Kim, J. G. Park, and J. S. Lee, Possible persistence of multiferroic order down to bilayer limit of van der Waals material NiI2, Nano Lett. 21(12), 5126 (2021)

    Article  ADS  Google Scholar 

  110. M. Kruse, U. Petralanda, M. N. Gjerding, K. W. Jacobsen, K. S. Thygesen, and T. Olsen, Two-dimensional ferroelectrics from high throughput computational screening, npj Comput Mater. 9(1), 45 (2023)

    Article  ADS  Google Scholar 

  111. J. Liu and S. T. Pantelides, Pyroelectric response and temperature-induced α−β phase transitions in α-In2Se3 and other α-III2VI3 (III = Al, Ga, In; VI = S, Se) monolayers, 2D Mater. 6(2), 025001 (2019)

    Article  Google Scholar 

  112. P. Finkel, M. G. Cain, T. Mion, M. Staruch, J. Kolacz, S. Mantri, C. Newkirk, K. Kavetsky, J. Thornton, J. Xia, M. Currie, T. Hase, A. Moser, P. Thompson, C. A. Lucas, A. Fitch, J. M. Cairney, S. D. Moss, A. G. A. Nisbet, J. E. Daniels, and S. E. Lofland, Simultaneous large optical and piezoelectric effects induced by domain reconfiguration related to ferroelectric phase transitions, Adv. Mater. 34(7), 2106827 (2022)

    Article  Google Scholar 

  113. M. Gabel and Y. Gu, Understanding microscopic operating mechanisms of a van der Waals planar ferroelectric memristor, Adv. Funct. Mater. 31(9), 2009999 (2021)

    Article  Google Scholar 

  114. K. Liu, T. Zhang, B. Dang, L. Bao, L. Xu, C. Cheng, Z. Yang, R. Huang, and Y. Yang, An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing, Nat. Electron. 5(11), 761 (2022)

    Article  Google Scholar 

  115. S. Xiao, X. Li, W. Zhang, Y. Xiang, T. Li, X. Niu, J. S. Chen, and Q. Yan, Bilateral interfaces in In2Se3−CoIn2−CoSe2 heterostructures for high-rate reversible sodium storage, ACS Nano 15(8), 13307 (2021)

    Article  Google Scholar 

  116. R. Xue, Z. Shao, X. Yang, Y. Zhang, Z. Fu, Y. Huang, and W. Feng, Self-powered photoelectrochemical photodetectors based on electrochemically exfoliated In2Se3 nanosheets, ACS Appl. Nano Mater. 5(5), 7036 (2022)

    Article  Google Scholar 

  117. R. Moshwan, L. Yang, J. Zou, and Z. G. Chen, Ecofriendly SnTe thermoelectric materials: Progress and future challenges, Adv. Funct. Mater. 27(43), 1703278 (2017)

    Article  Google Scholar 

  118. K. Chang, J. Liu, H. Lin, N. Wang, K. Zhao, A. Zhang, F. Jin, Y. Zhong, X. Hu, W. Duan, Q. Zhang, L. Fu, Q. K. Xue, X. Chen, and S. H. Ji, Discovery of robust in-plane ferroelectricity in atomic-thick SnTe, Science 353(6296), 274 (2016)

    Article  ADS  Google Scholar 

  119. C. R. Guo, B. C. Qin, D. Y. Wang, and L. D. Zhao, Investigation on halogen-doped n-type SnTe thermoelectrics, Rare Met. 41(11), 3803 (2022)

    Article  Google Scholar 

  120. F. Xiong, H. B. Tan, C. Xia, and Y. Chen, Strain and doping in two-dimensional SnTe nanosheets: Implications for thermoelectric conversion, ACS Appl. Nano Mater. 3(1), 114 (2020)

    Article  Google Scholar 

  121. H. Pang, Y. Qiu, D. Wang, Y. Qin, R. Huang, Z. Yang, X. Zhang, and L. D. Zhao, Realizing N-type SnTe thermoelectrics with competitive performance through suppressing Sn vacancies, J. Am. Chem. Soc. 143(23), 8538 (2021)

    Article  Google Scholar 

  122. J. Chen, C. Zhu, G. Cao, H. Liu, R. Bian, J. Wang, C. Li, J. Chen, Q. Fu, Q. Liu, P. Meng, W. Li, F. Liu, and Z. Liu, Mimicking neuroplasticity via ion migration in van der Waals layered copper indium thiophosphate, Adv. Mater. 34(25), 2104676 (2022)

    Article  Google Scholar 

  123. X. Jiang, X. Wang, X. Wang, X. Zhang, R. Niu, J. Deng, S. Xu, Y. Lun, Y. Liu, T. Xia, J. Lu, and J. Hong, Manipulation of current rectification in van der Waals ferroionic CuInP2S6, Nat. Commun. 13(1), 574 (2022)

    Article  ADS  Google Scholar 

  124. D. Wijethunge, L. Zhang, and A. Du, Prediction of two-dimensional ferroelectric metal Mxenes, J. Mater. Chem. C 9(34), 11343 (2021)

    Article  Google Scholar 

  125. R. Tahir, S. A. Zahra, U. Naeem, D. Akinwande, and S. Rizwan, First observation on emergence of strong room-temperature ferroelectricity and multiferroicity in 2D-Ti3C2Tx free-standing MXene film, RSC Adv. 12(38), 24571 (2022)

    Article  ADS  Google Scholar 

  126. R. Tahir, S. Fatima, S. A. Zahra, D. Akinwande, H. Li, S. H. M. Jafri, and S. Rizwan, Multiferroic and ferroelectric phases revealed in 2D Ti3C2Tx MXene film for high performance resistive data storage devices, npj 2D Mater. Appl. 7(1), 7 (2023)

    Article  Google Scholar 

  127. S. Yuan, X. Luo, H. L. Chan, C. Xiao, Y. Dai, M. Xie, and J. Hao, Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit, Nat. Commun. 10(1), 1775 (2019)

    Article  ADS  Google Scholar 

  128. A. Weston, E. G. Castanon, V. Enaldiev, F. Ferreira, S. Bhattacharjee, S. Xu, H. Corte-Leon, Z. Wu, N. Clark, A. Summerfield, T. Hashimoto, Y. Gao, W. Wang, M. Hamer, H. Read, L. Fumagalli, A. V. Kretinin, S. J. Haigh, O. Kazakova, A. K. Geim, V. I. Fal’ko, and R. Gorbachev, Interfacial ferroelectricity in marginally twisted 2D semiconductors, Nat. Nanotechnol. 17(4), 390 (2022)

    Article  ADS  Google Scholar 

  129. M. Han, C. Wang, K. Niu, Q. Yang, C. Wang, X. Zhang, J. Dai, Y. Wang, X. Ma, J. Wang, L. Kang, W. Ji, and J. Lin, Continuously tunable ferroelectric domain width down to the single-atomic limit in bismuth tellurite, Nat. Commun. 13(1), 5903 (2022)

    Article  ADS  Google Scholar 

  130. R. Fei, W. Kang, and L. Yang, Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides, Phys. Rev. Lett. 117(9), 097601 (2016)

    Article  ADS  Google Scholar 

  131. K. Chang and S. S. P. Parkin, Experimental formation of monolayer group-IV monochalcogenides, J. Appl. Phys. 127(22), 220902 (2020)

    Article  ADS  Google Scholar 

  132. N. Higashitarumizu, H. Kawamoto, C. J. Lee, B. H. Lin, F. H. Chu, I. Yonemori, T. Nishimura, K. Wakabayashi, W. H. Chang, and K. Nagashio, Purely in-plane ferroelectricity in monolayer SnS at room temperature, Nat. Commun. 11(1), 2428 (2020)

    Article  ADS  Google Scholar 

  133. X. F. Lu, Y. Zhang, N. Wang, S. Luo, K. Peng, L. Wang, H. Chen, W. Gao, X. H. Chen, Y. Bao, G. Liang, and K. P. Loh, Exploring low power and ultrafast memristor on p-type van der Waals SnS, Nano Lett. 21(20), 8800 (2021)

    Article  ADS  Google Scholar 

  134. Y. Luo, N. Mao, D. Ding, M. H. Chiu, X. Ji, K. Watanabe, T. Taniguchi, V. Tung, H. Park, P. Kim, J. Kong, and W. L. Wilson, Electrically switchable anisotropic polariton propagation in a ferroelectric van der Waals semiconductor, Nat. Nanotechnol. 18(4), 350 (2023)

    Article  ADS  Google Scholar 

  135. K. Chang, F. Kuster, B. J. Miller, J. R. Ji, J. L. Zhang, P. Sessi, S. Barraza-Lopez, and S. S. P. Parkin, Microscopic manipulation of ferroelectric domains in SnSe monolayers at room temperature, Nano Lett. 20(9), 6590 (2020)

    Article  ADS  Google Scholar 

  136. H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, From bulk to monolayer MoS2: Evolution of Raman scattering, Adv. Funct. Mater. 22(7), 1385 (2012)

    Article  Google Scholar 

  137. E. Gao, S. Z. Lin, Z. Qin, M. J. Buehler, X. Q. Feng, and Z. Xu, Mechanical exfoliation of two-dimensional materials, J. Mech. Phys. Solids 115, 248 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  138. K. S. Novoselov, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)

    Article  ADS  Google Scholar 

  139. J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, et al., Liquid exfoliation of layered materials, Science 331(6017), 568 (2013)

    Article  ADS  Google Scholar 

  140. C. Chang, W. Chen, Y. Chen, Y. Chen, Y. Chen, et al., Recent progress on two-dimensional materials, Acta Phys.-Chim. Sin. 37(12), 2108017 (2021)

    Article  Google Scholar 

  141. Z. Lin, Y. Liu, U. Halim, M. Ding, Y. Liu, Y. Wang, C. Jia, P. Chen, X. Duan, C. Wang, F. Song, M. Li, C. Wan, Y. Huang, and X. Duan, Solution-processable 2D semiconductors for high-performance large-area electronics, Nature 562(7726), 254 (2018)

    Article  ADS  Google Scholar 

  142. J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, et al., Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science 331(6017), 568 (2011)

    Article  ADS  Google Scholar 

  143. X. Cai, Y. Luo, B. Liu, and H. M. Cheng, Preparation of 2D material dispersions and their applications, Chem. Soc. Rev. 47(16), 6224 (2018)

    Article  Google Scholar 

  144. M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5(4), 263 (2013)

    Article  Google Scholar 

  145. J. D. Yao, Z. Q. Zheng, and G. W. Yang, Production of large -area 2D materials for high-performance photodetectors by pulsed-laser deposition, Prog. Mater. Sci. 106, 100573 (2019)

    Article  Google Scholar 

  146. N. A. Shepelin, Z. P. Tehrani, N. Ohannessian, C. W. Schneider, D. Pergolesi, and T. Lippert, A practical guide to pulsed laser deposition, Chem. Soc. Rev. 52(7), 2294 (2023)

    Article  Google Scholar 

  147. R. Rashid, F. C. C. Ling, S. P. Wang, K. Xiao, X. Cui, Q. Rao, and D. K. Ki, IP and OOP ferroelectricity in hexagonal γ-In2Se3 nanoflakes grown by chemical vapor deposition, J. Alloys Compd. 870, 159344 (2021)

    Article  Google Scholar 

  148. J. Zhou, Q. Zeng, D. Lv, L. Sun, L. Niu, W. Fu, F. Liu, Z. Shen, C. Jin, and Z. Liu, Controlled synthesis of high-quality monolayered α-In2Se3 via physical vapor deposition, Nano Lett. 15(10), 6400 (2015)

    Article  ADS  Google Scholar 

  149. Y. Huang, Y. H. Pan, R. Yang, L. H. Bao, L. Meng, et al., Universal mechanical exfoliation of large-area 2D crystals, Nat. Commun. 11(1), 2453 (2020)

    Article  ADS  Google Scholar 

  150. J. Gao, Y. Zheng, W. Yu, Y. Wang, T. Jin, X. Pan, K. P. Loh, and W. Chen, Intrinsic polarization coupling in 2D α-In2Se3 toward artificial synapse with multimode operations, SmartMat 2(1), 88 (2021)

    Article  Google Scholar 

  151. Z. Wang and W. Zhu, Tunable band alignments in 2D ferroelectric α-In2Se3 based van der Waals heterostructures, ACS Appl. Electron. Mater. 3(11), 5114 (2021)

    Article  Google Scholar 

  152. B. Lv, W. Xue, Z. Yan, R. Yang, H. Wu, P. Wang, Y. Zhang, J. Hou, W. Zhu, and X. Xu, Control of photocurrent and multi-state memory by polar order engineering in 2H-stacked α-In2Se3 ferroelectric, Sci. China Mater. 65(6), 1639 (2022)

    Article  Google Scholar 

  153. Y. Zhang, L. Wang, H. Chen, T. Ma, X. Lu, and K. P. Loh, Analog and digital mode α-In2Se3 memristive devices for neuromorphic and memory applications, Adv. Electron. Mater. 7(12), 2100609 (2021)

    Article  Google Scholar 

  154. S. Wan, Q. Peng, Z. Wu, and Y. Zhou, Nonvolatile ferroelectric memory with lateral β/α/β In2Se3 heterojunctions, ACS Appl. Mater. Interfaces 14(22), 25693 (2022)

    Article  Google Scholar 

  155. Y. Liu, Y. Wu, B. Wang, H. Chen, D. Yi, and K. Liu, Versatile memristor implemented in van der Waals CuInP2S6, Nano Res. 16(6), (2023)

    Google Scholar 

  156. B. Li, S. Li, H. Wang, L. Chen, L. Liu, X. Feng, Y. Li, J. Chen, X. Gong, and K. W. Ang, An electronic synapse based on 2D ferroelectric CuInP2S6, Adv. Electron. Mater. 6(12), 2000760 (2020)

    Article  Google Scholar 

  157. P. Li, A. Chaturvedi, H. Zhou, G. Zhang, Q. Li, J. Xue, Z. Zhou, S. Wang, K. Zhou, Y. Weng, F. Zheng, Z. Shi, E. H. T. Teo, L. Fang, and L. You, Electrostatic coupling in MoS2/CuInP2S6 ferroelectric vdW heterostructures, Adv. Funct. Mater. 32(29), 2201359 (2022)

    Article  Google Scholar 

  158. S. R. Jian, J. Y. Juang, C. W. Luo, S. A. Ku, and K. H. Wu, Nanomechanical properties of GaSe thin films deposited on Si(111) substrates by pulsed laser deposition, J. Alloys Compd. 542, 124 (2012)

    Article  Google Scholar 

  159. K. C. Kwon, Y. Zhang, L. Wang, W. Yu, X. Wang, I. H. Park, H. S. Choi, T. Ma, Z. Zhu, B. Tian, C. Su, and K. P. Loh, In-plane ferroelectric tin monosulfide and its application in a ferroelectric analog synaptic device, ACS Nano 14(6), 7628 (2020)

    Article  Google Scholar 

  160. P. C. Shen, Y. Lin, H. Wang, J. H. Park, W. S. Leong, A. Y. Lu, T. Palacios, and J. Kong, CVD technology for 2-D materials, IEEE Trans. Electron Dev. 65(10), 4040 (2018)

    Article  ADS  Google Scholar 

  161. D. Vernardou, Special issue: Advances in chemical vapor deposition, Materials (Basel) 13(18), 4167 (2020)

    Article  ADS  Google Scholar 

  162. W. F. Io, S. Yuan, S. Y. Pang, L. W. Wong, J. Zhao, and J. Hao, Temperature- and thickness-dependence of robust out-of-plane ferroelectricity in CVD grown ultrathin van der Waals α-In2Se3 layers, Nano Res. 13(7), 1897 (2020)

    Article  Google Scholar 

  163. C. Muratore, A. A. Voevodin, and N. R. Glavin, Physical vapor deposition of 2D van der Waals materials: A review, Thin Solid Films 688, 137500 (2019)

    Article  ADS  Google Scholar 

  164. B. Liu, Q. Han, L. Li, S. Zheng, Y. Shu, J. A. Pedersen, and Z. Wang, Synergistic effect of metal cations and visible light on 2D MoS2 nanosheet aggregation, Environ. Sci. Technol. 55(24), 16379 (2021)

    Article  ADS  Google Scholar 

  165. P. D. Taylor, S. A. Tawfik, and M. J. S. Spencer, Ferroelectric van der Waals heterostructures of CuInP2S6 for non-volatile memory device applications, Nanotechnology 34(6), 065701 (2023)

    Article  ADS  Google Scholar 

  166. W. Yang, B. Cheng, J. Hou, J. Deng, X. Ding, J. Sun, and J. Z. Liu, Writing-speed dependent thresholds of ferroelectric domain switching in monolayer α-In2Se3, Small Methods 7(6), 2300050 (2023)

    Article  Google Scholar 

  167. Y. Yan, M. Xiang, X. Wang, T. Xu, and F. Xuan, Ferroelectric domain wall in two-dimensional GeS, J. Appl. Phys. 132(7), 074302 (2022)

    Article  Google Scholar 

  168. F. Xue, X. He, Y. Ma, D. Zheng, C. Zhang, L. J. Li, J. H. He, B. Yu, and X. Zhang, Unraveling the origin of ferroelectric resistance switching through the interfacial engineering of layered ferroelectric-metal junctions, Nat. Commun. 12(1), 7291 (2021)

    Article  ADS  Google Scholar 

  169. S. Zhou, L. Liao, J. Chen, Y. Yu, Z. Lv, M. Yang, B. Yao, S. Zhang, G. Peng, Z. Huang, Y. Liu, X. Qi, and G. Wang, Periodic ferroelectric stripe domains in α-In2Se3 nanoflakes grown via reverse-flow chemical vapor deposition, ACS Appl. Mater. Interfaces 15(19), 23613 (2023)

    Article  Google Scholar 

  170. Y. Zhai, P. Xie, J. Hu, X. Chen, Z. Feng, Z. Lv, G. Ding, K. Zhou, Y. Zhou, and S. T. Han, Reconfigurable 2D-ferroelectric platform for neuromorphic computing, Phys. Rev. Appl. 10(1), 011408 (2023)

    Article  Google Scholar 

  171. W. Li, Y. Guo, Z. Luo, S. Wu, B. Han, W. Hu, L. You, K. Watanabe, T. Taniguchi, T. Alava, J. Chen, P. Gao, X. Li, Z. Wei, L. W. Wang, Y. Y. Liu, C. Zhao, X. Zhan, Z. V. Han, and H. Wang, A gate programmable van der Waals metal-ferroelectric-semiconductor vertical heterojunction memory, Adv. Mater. 35(5), 2208266 (2023)

    Article  Google Scholar 

  172. Y. Wang, W. Li, Y. Guo, X. Huang, Z. Luo, S. Wu, H. Wang, J. Chen, X. Li, X. Zhan, and H. Wang, A gatetunable artificial synapse based on vertically assembled van der Waals ferroelectric heterojunction, J. Mater. Sci. Technol. 128, 239 (2022)

    Article  Google Scholar 

  173. A. Abnavi, R. Ahmadi, A. Hasani, M. Fawzy, M. R. Mohammadzadeh, T. De Silva, N. Yu, and M. M. Adachi, Free-standing multilayer molybdenum disulfide memristor for brain-inspired neuromorphic applications, ACS Appl. Mater. Interfaces 13(38), 45843 (2021)

    Article  Google Scholar 

  174. K. Wang, J. Chen, and X. Yan, MXene Ti3C2 memristor for neuromorphic behavior and decimal arithmetic operation applications, Nano Energy 79, 105453 (2021)

    Article  Google Scholar 

  175. Y. Yoon, K. Ganapathi, and S. Salahuddin, How good can monolayer MoS2 transistors be, Nano Lett. 11(9), 3768 (2011)

    Article  ADS  Google Scholar 

  176. A. B. Loginov, P. V. Fedotov, S. N. Bokova-Sirosh, I. V. Sapkov, D. N. Chmelenin, R. R. Ismagilov, E. D. Obraztsova, B. A. Loginov, and A. N. Obraztsov, Synthesis, structural, and photoluminescence properties of MoS2 nanowall films, Phys. Status Solidi B 260(6), 2200481 (2022)

    ADS  Google Scholar 

  177. T. Shimada, K. Minaguro, T. Xu, J. Wang, and T. Kitamura, Ab initio study of ferroelectric critical size of SnTe low-dimensional nanostructures, Nanomaterials (Basel) 10(4), 732 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge grants from the National Natural Science Foundation of China (Grant No. 61974093), the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2023A1515012479), the Science and Technology Innovation Commission of Shenzhen (Grant Nos. RCYX20200714114524157 and JCYJ20220818100206013), and the NTUT-SZU Joint Research Program (Grant No. NTUT-SZU-112-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chi-Ching Kuo or Ye Zhou.

Ethics declarations

Declarations The authors declare that they have no competing interests and there are no conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, W., Ding, G., Jia, Z. et al. Recent advances in memristors based on two-dimensional ferroelectric materials. Front. Phys. 19, 13402 (2024). https://doi.org/10.1007/s11467-023-1329-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1329-8

Keywords

Navigation