Skip to main content
Log in

Silicon-based epitaxial ferroelectric memristor for high temperature operation in self-assembled vertically aligned BaTiO3-CeO2 films

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ferroelectric memristors, as one of the most potential non-volatile memory to meet the rapid development of the artificial intelligence era, have the comprehensive function of simulating brain storage and calculation. However, due to the high dielectric loss of traditional ferroelectric materials, the durability of ferroelectric memristors and Si based integration have a great challenge. Here, we report a silicon-based epitaxial ferroelectric memristor based on self-assembled vertically aligned nanocomposites BaTiO3(BTO)-CeO2 films. The BTO-CeO2 memristors exhibit a stable resistance switching behavior at a high temperature of 100 °C due to higher Curie temperatures of BTO-CeO2 films with in-plane compressive strain. And the endurance of the device can reach the order of magnitude of 1 × 106 times. More importantly, the device has excellent functions for simulating artificial synaptic behavior, including excitatory post-synaptic current, paired-pulse facilitation, paired-pulse depression, spike-time-dependent plasticity, and short and long-term plasticity. Digits recognition ability of the memristor devices is evaluated though a single-layer perceptron model, in which recognition accuracy of digital can reach 86.78% after 20 training iterations. These results provide new way for epitaxial composite ferroelectric films as memristor medium with high temperature intolerance and better durability integrated on silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ielmini, D.; Wong, H. S. P. In-memory computing with resistive switching devices. Nat. Electron. 2018, 1, 333–343.

    Article  Google Scholar 

  2. Zhang, Y.; Wang, Z. R.; Zhu, J. D.; Yang, Y. C.; Rao, M. Y.; Song, W. H.; Zhuo, Y.; Zhang, X. M.; Cui, M. L.; Shen, L. L. et al. Brain-inspired computing with memristors: Challenges in devices, circuits, and systems. Appl. Phys. Rev. 2020, 7, 011308.

    Article  CAS  Google Scholar 

  3. Berdan, R.; Marukame, T.; Ota, K.; Yamaguchi, M.; Saitoh, M.; Fujii, S.; Deguchi, J.; Nishi, Y. Low-power linear computation using nonlinear ferroelectric tunnel junction memristors. Nat. Electron. 2020, 3, 259–266.

    Article  Google Scholar 

  4. Yan, J. M.; Ying, J. S.; Yan, M. Y.; Wang, Z. C.; Li, S. S.; Chen, T. W.; Gao, G. Y.; Liao, F. Y.; Luo, H. S.; Zhang, T. et al. Optoelectronic coincidence detection with two-dimensional Bi2O2Se ferroelectric field-effect transistors. Adv. Funct. Mater. 2021, 31, 2103982.

    Article  CAS  Google Scholar 

  5. Soni, R.; Petraru, A.; Meuffels, P.; Vavra, O.; Ziegler, M.; Kim, S. K.; Jeong, D. S.; Pertsev, N. A.; Kohlstedt, H. Giant electrode effect on tunnelling electroresistance in ferroelectric tunnel junctions. Nat. Commun. 2014, 5, 5414.

    Article  Google Scholar 

  6. Zhou, C. J.; Chai, Y. Ferroelectric-gated two-dimensional-material-based electron devices. Adv. Electron. Mater. 2017, 3, 1600400.

    Article  Google Scholar 

  7. Nuraje, N., Su, K. Perovskite ferroelectric nanomaterials. Nanoscale 2013, 5, 8752–8780.

    Article  CAS  Google Scholar 

  8. Hu, Z. Q.; Li, Q.; Li, M. Y.; Wang, Q. W.; Zhu, Y. D.; Liu, X. L.; Zhao, X. Z.; Liu, Y.; Dong, S. X. Ferroelectric memristor based on Pt/BiFeO3/Nb-doped SrTiO3 heterostructure. Appl. Phys. Lett. 2013, 102, 102901.

    Article  Google Scholar 

  9. Yan, F.; Xing, G. Z.; Li, L. Low temperature dependent ferroelectric resistive switching in epitaxial BiFeO3 films. Appl. Phys. Lett. 2014, 104, 132904.

    Article  Google Scholar 

  10. Li, J. K.; Ge, C.; Du, J. Y.; Wang, C.; Yang, G. Z.; Jin, K. J. Reproducible ultrathin ferroelectric domain switching for highperformance neuromorphic computing. Adv. Mater. 2020, 32, 1905764.

    Article  CAS  Google Scholar 

  11. Lee, J. S.; Lee, S.; Noh, T. W. Resistive switching phenomena: A review of statistical physics approaches. Appl. Phys. Rev. 2015, 2, 031303.

    Article  Google Scholar 

  12. Haertling, G. H. Ferroelectric ceramics: History and technology. J. Am. Ceram. Soc. 1999, 82, 797–818.

    Article  CAS  Google Scholar 

  13. Issa, M. A. A.; Molokhia, N. M.; Dughaish, Z. H. Effect of cerium oxide (CeO2) additives on the dielectric properties of BaTiO3 ceramics. J. Phys. D Appl. Phys. 1983, 16, 1109–1114.

    Article  CAS  Google Scholar 

  14. Khatkhatay, F.; Chen, A. P.; Lee, J. H.; Zhang, W. R.; Abdel-Raziq, H.; Wang, H. Y. Ferroelectric properties of vertically aligned nanostructured BaTiO3-CeO2 thin films and their integration on silicon. ACS Appl. Mater. Interfaces 2013, 5, 12541–12547.

    Article  CAS  Google Scholar 

  15. Hwang, J. H.; Han, Y. H. Dielectric properties of (Ba1−xCex) TiO3. Jpn. J. Appl. Phys. 2000, 39, 2701.

    Article  CAS  Google Scholar 

  16. Yoon, J. H.; Wang, Z. R.; Kim, K. M.; Wu, H. Q.; Ravichandran, V.; Xia, Q. F.; Hwang, C. S.; Yang, J. J. An artificial nociceptor based on a diffusive memristor. Nat. Commun. 2018, 9, 417.

    Article  Google Scholar 

  17. Jia, C. H.; Li, J. C.; Yang, G.; Chen, Y. H.; Zhang, W. F. Ferroelectric field effect induced asymmetric resistive switching effect in BaTiO3/Nb: SrTiO3 epitaxial heterojunctions. Nanoscale Res. Lett. 2018, 13, 102.

    Article  Google Scholar 

  18. Guo, R.; Zhou, Y. X.; Wu, L. J.; Wang, Z. R.; Lim, Z.; Yan, X. B.; Lin, W. N.; Wang, H.; Yoong, H. Y.; Chen, S. H. et al. Control of synaptic plasticity learning of ferroelectric tunnel memristor by nanoscale interface engineering. ACS Appl. Mater. Interfaces 2018, 10, 12862–12869.

    Article  CAS  Google Scholar 

  19. Zhou, Z. Y.; Yan, X. B.; Zhao, J. H.; Lu, C.; Ren, D. L.; Lu, N. D.; Wang, J. J.; Zhang, L.; Li, X. Y.; Wang, H. et al. Synapse behavior characterization and physical mechanism of a TiN/SiOx/p-Si tunneling memristor device. J. Mater. Chem. C 2019, 7, 1561–1567.

    Article  CAS  Google Scholar 

  20. Sze, S. M.; Li, Y. M.; Ng, K. K. Physics of Semiconductor Devices, 4th ed.; Wiley: New York, 2021.

    Google Scholar 

  21. Pantel, D.; Alexe, M. Electroresistance effects in ferroelectric tunnel barriers. Phys. Rev. B 2010, 82, 134105.

    Article  Google Scholar 

  22. Tung, R. T. The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 2014, 1, 011304.

    Article  Google Scholar 

  23. Yang, N.; Ren, Z. Q.; Hu, C. Z.; Guan, Z.; Tian, B. B.; Zhong, N.; Xiang, P. H.; Duan, C. G.; Chu, J. H. Ultra-wide temperature electronic synapses based on self-rectifying ferroelectric memristors. Nanotechnology 2019, 30, 464001.

    Article  CAS  Google Scholar 

  24. Wang, J.; Neaton, J. B.; Zheng, H.; Nagarajan, V.; Ogale, S. B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D. G.; Waghmare, U. V. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 2003, 299, 1719–1722.

    Article  CAS  Google Scholar 

  25. Lin, W. J.; Tseng, T. Y.; Lu, H. B.; Tu, S. L.; Yang, S. J.; Lin, I. Growth and ferroelectricity of epitaxial-like BaTiO3 films on single-crystal MgO, SrTiO3, and silicon substrates synthesized by pulsed laser deposition. J. Appl. Phys. 1995, 77, 6466–6471.

    Article  CAS  Google Scholar 

  26. Ma, C.; Luo, Z.; Huang, W. C.; Zhao, L. T.; Chen, Q. L.; Lin, Y.; Liu, X.; Chen, Z. W.; Liu, C. C.; Sun, H. Y. et al. Sub-nanosecond memristor based on ferroelectric tunnel junction. Nat. Commun. 2020, 11, 1439.

    Article  CAS  Google Scholar 

  27. Wen, Z.; Li, C.; Wu, D.; Li, A. D.; Ming, N. B. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat. Mater. 2013, 12, 617–621.

    Article  CAS  Google Scholar 

  28. Yan, X. B.; Zhao, J. H.; Liu, S.; Zhou, Z. Y.; Liu, Q.; Chen, J. S.; Liu, X. Y. Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing. Adv. Funct. Mater. 2018, 28, 1705320.

    Article  Google Scholar 

  29. Covi, E.; Brivio, S.; Fanciulli, M.; Spiga, S. Synaptic potentiation and depression in Al: HfO2-based memristor. Microelectron. Eng. 2015, 147, 41–44.

    Article  CAS  Google Scholar 

  30. Yang, R.; Huang, H. M.; Hong, Q. H.; Yin, X. B.; Tan, Z. H.; Shi, T.; Zhou, Y. X.; Miao, X. S.; Wang, X. P.; Mi, S. B. et al. Synaptic suppression triplet-STDP learning rule realized in second-order memristors. Adv. Funct. Mater. 2018, 28, 1704455.

    Article  Google Scholar 

  31. Luo, Z. D.; Peters, J. J. P.; Sanchez, A. M.; Alexe, M. Flexible memristors based on single-crystalline ferroelectric tunnel junctions. ACS Appl. Mater. Interfaces 2019, 11, 23313–23319.

    Article  CAS  Google Scholar 

  32. Hu, J. W.; Wang, Z. H.; Yu, W. L.; Wu, T. Optically controlled electroresistance and electrically controlled photovoltage in ferroelectric tunnel junctions. Nat. Commun. 2016, 7, 10808.

    Article  CAS  Google Scholar 

  33. Garcia, V.; Bibes, M. Ferroelectric tunnel junctions for information storage and processing. Nat. Commun. 2014, 5, 4289.

    Article  CAS  Google Scholar 

  34. Li, C. J.; Huang, L. S.; Li, T.; Lü, W. M.; Qiu, X. P.; Huang, Z.; Liu, Z. Q.; Zeng, S. W.; Guo, R.; Zhao, Y. L. et al. Ultrathin BaTiO3-based ferroelectric tunnel junctions through interface engineering. Nano Lett. 2015, 15, 2568–2573.

    Article  CAS  Google Scholar 

  35. Fan, Z.; Xiao, J. X.; Wang, J. X.; Zhang, L.; Deng, J. Y.; Liu, Z. Y.; Dong, Z. L.; Wang, J.; Chen, J. S. Ferroelectricity and ferroelectric resistive switching in sputtered Hf0.5Zr0.5O2 thin films. Appl. Phys. Lett. 2016, 108, 232905.

    Article  Google Scholar 

  36. Kozodaev, M. G.; Chernikova, A. G.; Korostylev, E. V.; Park, M. H.; Schroeder, U.; Hwang, C. S.; Markeev, A. M. Ferroelectric properties of lightly doped La: HfO2 thin films grown by plasmaassisted atomic layer deposition. Appl. Phys. Lett. 2017, 111, 132903.

    Article  Google Scholar 

  37. Pei, Y. F.; Yan, L.; Wu, Z. H.; Lu, J. K.; Zhao, J. H.; Chen, J. S.; Liu, Q.; Yan, X. B. Artificial visual perception nervous system based on low-dimensional material photoelectric memristors. ACS Nano 2021, 15, 17319–17326.

    Article  CAS  Google Scholar 

  38. Wang, K. Y.; Li, L. T.; Zhao, R. J.; Zhao, J. H.; Zhou, Z. Y.; Wang, J. J.; Wang, H.; Tang, B. K.; Lu, C.; Lou, J. Z. et al. A pure 2HMoS2 nanosheet-based memristor with low power consumption andlinear multilevel storage for artificial synapse emulator. Adv.Electron. Mater. 2020, 6, 1901342.

    Article  CAS  Google Scholar 

  39. Wang, Z. R.; Joshi, S.; Savel’ev, S.; Song, W. H.; Midya, R.; Li, Y. N.; Rao, M. Y.; Yan, P.; Asapu, S.; Zhuo, Y. et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 2018, 1, 137–145.

    Article  Google Scholar 

  40. Mikheev, V.; Chouprik, A.; Lebedinskii, Y.; Zarubin, S.; Matveyev, Y.; Kondratyuk, E.; Kozodaev, M. G.; Markeev, A. M.; Zenkevich, A.; Negrov, D. Ferroelectric second-order memristor. ACS Appl. Mater. Interfaces 2019, 11, 32108–32114.

    Article  CAS  Google Scholar 

  41. Yan, X. B.; Wang, K. Y.; Zhao, J. H.; Zhou, Z. Y.; Wang, H.; Wang, J. J.; Zhang, L.; Li, X. Y.; Xiao, Z. A.; Zhao, Q. L. et al. A new memristor with 2D Ti3C2Tx MXene flakes as an artificial bio-synapse. Small 2019, 15, 1900107.

    Article  Google Scholar 

  42. Zuo, F.; Panda, P.; Kotiuga, M.; Li, J. R.; Kang, M. G.; Mazzoli, C.; Zhou, H.; Barbour, A.; Wilkins, S.; Narayanan, B. et al. Habituation based synaptic plasticity and organismic learning in a quantum perovskite. Nat. Commun. 2017, 8, 240.

    Article  Google Scholar 

  43. Yan, X. B.; Cao, G.; Wang, J. J.; Man, M. H.; Zhao, J. H.; Zhou, Z. Y.; Wang, H.; Pei, Y. F.; Wang, K. Y.; Gao, C. et al. Memristors based on multilayer graphene electrodes for implementing a low-power neuromorphic electronic synapse. J. Mater. Chem. C 2020, 8, 4926–4933.

    Article  CAS  Google Scholar 

  44. Ren, Y.; Yang, J. Q.; Zhou, L.; Mao, J. Y.; Zhang, S. R.; Zhou, Y.; Han, S. T. Gate-tunable synaptic plasticity through controlled polarity of charge trapping in fullerene composites. Adv. Funct. Mater. 2018, 28, 1805599.

    Article  Google Scholar 

  45. Yang, C. S.; Shang, D. S.; Liu, N.; Shi, G.; Shen, X.; Yu, R. C.; Li, Y. Q.; Sun, Y. A synaptic transistor based on quasi-2D molybdenum oxide. Adv. Mater. 2017, 29, 1700906.

    Article  Google Scholar 

  46. Zhou, L.; Yang, S. W.; Ding, G. Q.; Yang, J. Q.; Ren, Y.; Zhang, S. R.; Mao, J. Y.; Yang, Y. C.; Zhou, Y.; Han, S. T. Tunable synaptic behavior realized in C3N composite based memristor. Nano Energy 2019, 58, 293–303.

    Article  CAS  Google Scholar 

  47. Prezioso, M.; Merrikh-Bayat, F.; Hoskins, B. D.; Adam, G. C.; Likharev, K. K.; Strukov, D. B. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 2015, 521, 61–64.

    Article  CAS  Google Scholar 

  48. Yan, X. B.; Pei, Y. F.; Chen, H. W.; Zhao, J. H.; Zhou, Z. Y.; Wang, H.; Zhang, L.; Wang, J. J.; Li, X. Y.; Qin, C. Y. et al. Self-assembled networked PbS distribution quantum dots for resistive switching and artificial synapse performance boost of memristors. Adv. Mater. 2019, 31, 1805284.

    Article  Google Scholar 

  49. Hahnloser, R. H. R.; Sarpeshkar, R.; Mahowald, M. A.; Douglas, R. J.; Seung, H. S. Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature 2000, 405, 947–951.

    Article  CAS  Google Scholar 

  50. Krishnaprasad, A.; Choudhary, N.; Das, S.; Dev, D.; Kalita, H.; Chung, H. S.; Aina, O.; Jung, Y.; Roy, T. Electronic synapses with near-linear weight update using MoS2/graphene memristors. Appl. Phys. Lett. 2019, 115, 103104.

    Article  Google Scholar 

  51. Lee, M. S.; Lee, J. W.; Kim, C. H.; Park, B. G.; Lee, J. H. Implementation of short-term plasticity and long-term potentiation in a synapse using Si-based type of charge-trap memory. IEEE Trans. Electron Devices 2015, 62, 569–573.

    Article  CAS  Google Scholar 

  52. Park, Y.; Park, M. J.; Lee, J. S. Reduced graphene oxide-based artificial synapse yarns for wearable textile device applications. Adv. Funct. Mater. 2018, 28, 1804123.

    Article  Google Scholar 

  53. Li, Y.; Chu, J. X.; Duan, W. J.; Cai, G. S.; Fan, X. H.; Wang, X. Z.; Wang, G.; Pei, Y. L. Analog and digital bipolar resistive switching in solution-combustion-processed NiO memristor. ACS Appl. Mater Interfaces 2018, 10, 24598–24606.

    Article  CAS  Google Scholar 

  54. Pei, Y. F.; Zhou, Z. Y.; Chen, A. P.; Chen, J. S.; Yan, X. B. A carbon-based memristor design for associative learning activities and neuromorphic computing. Nanoscale 2020, 12, 13531–13539.

    Article  CAS  Google Scholar 

  55. Ambrogio, S.; Ciocchini, N.; Laudato, M.; Milo, V.; Pirovano, A.; Fantini, P.; Ielmini, D. Unsupervised learning by spike timing dependent plasticity in phase change memory (PCM) synapses. Front. Neurosci. 2016, 10, 56.

    Article  Google Scholar 

  56. Gao, C.; Wang, H.; Zhu, Z. P.; Zhang, L.; Yang, Y. Q.; Cao, G.; Yan, X. B. A high-performance memristor device and its filter circuit application. Phys. Status Solidi Rapid Res. Lett. 2020, 14, 2000389.

    Article  CAS  Google Scholar 

  57. Tan, S. H.; Lin, P.; Yeon, H.; Choi, S.; Park, Y.; Kim, J. Perspective: Uniform switching of artificial synapses for large-scale neuromorphic arrays. APL Mater. 2018, 6, 120901.

    Article  Google Scholar 

  58. Ryu, J. H.; Hussain, F.; Mahata, C.; Ismail, M.; Abbas, Y.; Kim, M. H.; Choi, C.; Park, B. G.; Kim, S. Filamentary and interface switching of CMOS-compatible Ta2O5 memristor for non-volatile memory and synaptic devices. Appl. Surf. Sci. 2020, 529, 147167.

    Article  CAS  Google Scholar 

  59. Yang, Y. H.; Xi, Z. N.; Dong, Y. H.; Zheng, C. Y.; Hu, H. H.; Li, X. F.; Jiang, Z. Z.; Lu, W. C.; Wu, D.; Wen, Z. Spin-filtering ferroelectric tunnel junctions as multiferroic synapses for neuromorphic computing. ACS Appl. Mater. Interfaces 2020, 12, 56300–56309.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National key R&D plan “nano frontier” key special project (Grant NO. 2021YFA1200502), Cultivation projects of national major R&D project (Grant No. 92164109), National Natural Science Foundation of China (Grant NO. 61874158, 62004056 and 62104058), Special project of strategic leading science and technology of Chinese Academy of Sciences (Grant No. XDB44000000-7), Hebei Basic Research Special Key Project (Grant No. F2021201045), the Support Program for the Top Young Talents of Hebei Province (Grant No. 70280011807), the Supporting Plan for 100 Excellent Innovative Talents in Colleges and Universities of Hebei Province (Grant No. SLRC2019018), Interdisciplinary Research Program of Natural Science of Hebei University (DXK202101). Institute of Life Sciences and Green Development (521100311), Natural Science Foundation of Hebei Province (NO. F2022201054, F2021201022), Outstanding young scientific research and innovation team of Hebei University (Grant No. 605020521001), Special support funds for national high level talents (Grant No. 041500120001), Advanced Talents Incubation Program of the Hebei University (Grant No. 521000981426, 521100221071, 521000981363), Funded by Science and Technology Project of Hebei Education Department (Grant No. QN2020178, QN2021026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaobing Yan, Jianhui Zhao or Jingsheng Chen.

Electronic Supplementary Material

12274_2022_4604_MOESM1_ESM.pdf

Silicon-based epitaxial ferroelectric memristor for high temperature operation in self-assembled vertically aligned BaTiO3-CeO2 films

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Yan, H., Liu, G. et al. Silicon-based epitaxial ferroelectric memristor for high temperature operation in self-assembled vertically aligned BaTiO3-CeO2 films. Nano Res. 15, 9654–9662 (2022). https://doi.org/10.1007/s12274-022-4604-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4604-z

Keywords

Navigation