Skip to main content

Advertisement

Log in

Review of applications of 2D materials in memristive neuromorphic circuits

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Neuromorphic systems with large-scale parallel computing capability and low power consumption have become important for the development of artificial intelligence technologies. Memristors have been designed to achieve various computing functions and have been further applied in neuromorphic circuits owing to their high storage density, fast switching speed, ultra-low power consumption, and long endurance cycles. Among the different types of functional materials, 2D materials, which are a novel class of functional materials, have shown great potential in memristive neuromorphic applications because of their atomic-scale thickness, excellent electronic properties, thermal stability, mechanical flexibility, and strength. In addition, by stacking different 2D materials together, van der Waals (vdW) heterostructures retain not only the properties of each 2D material but also exhibit more interesting properties than their respective counterparts; therefore, vdW heterostructures are promising for flexible neuromorphic applications. In this review, we discuss the applications of 2D materials and their vdW heterostructures in memristive neuromorphic circuits from the perspective of material systems, physical mechanisms, advantages, and future challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Reproduced with permission from Ref. [21] © Macmillan Publishers Limited 2012]

Figure 3

Reproduced with permission from Ref. [29] © American Chemical Society 2013] d–f TEM images of the thickness of the dielectric layer in TiN/PCMO/Pt devices under different voltages. Scale bar: 10 nm. [Reproduced with permission from Ref. [30] © The Royal Society of Chemistry 2016]

Figure 4

Reproduced with permission from Ref. [40] © Macmillan Publishers Limited 2016]

Figure 5
Figure 6

Reproduced with permission from Ref. [58] © American Chemical Society 2018]

Figure 7

Reproduced with permission from Ref. [74] ©WILEY–VCH Verlag GmbH & Co 2019]

Figure 8

Reproduced with permission from Ref. [85] © WILEY–VCH Verlag GmbH & Co 2020]

Figure 9

Reproduced with permission from Ref. [89] © Macmillan Publishers Limited 2018] g Diagram of MoS2/graphene vdW heterojunction devices. h Pulsing scheme for STDP characterization. i Synaptic weight change as a function of timing difference of the prespike and the postspike signals. j Pulse training with 100 identical positive pulses and 100 negative pulses. k Weight update observed in the MoS2/graphene memristive device with the same pulse training in (j). [Reproduced with permission from Ref. [92] © AIP Publishing 2019]

Figure 10

Reproduced with permission from Ref. [100] © Springer Nature 2020]

Figure 11

Reproduced with permission from Ref. [107] © AIP Publishing 2019]

Figure 12

Reproduced with permission from Ref. [118] © WILEY–VCH Verlag GmbH & Co 2021]

Similar content being viewed by others

References

  1. Xia QF, Yang JJ (2019) Memristive crossbar arrays for brain-inspired computing. Nat Mater 18:309–323. https://doi.org/10.1038/s41563-019-0291-x

    Article  CAS  Google Scholar 

  2. Zhang T, Yang K, Xu XY, Cai YM, Yang YC, Huang R (2019) Memristive devices and networks for brain-inspired computing. Phys Status Solidi RRL 13:1900029–1900049. https://doi.org/10.1002/pssr.201900029

    Article  CAS  Google Scholar 

  3. Tang JS et al (2019) Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges. Adv Mater 31:1902761–1902793. https://doi.org/10.1002/adma.201902761

    Article  CAS  Google Scholar 

  4. Ren ZY, Zhu LQ, Ai L, Lou XQ, Cai JC, Li ZY, Xiao H (2021) Aqueous solution processed mesoporous silica-gated photo-perception neuromorphic transistor. J Mater Sci 56:4316–4327. https://doi.org/10.1007/s10853-020-05560-z

    Article  CAS  Google Scholar 

  5. Merolla PA et al (2014) A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345:668–673. https://doi.org/10.1126/science.1254642

    Article  CAS  Google Scholar 

  6. Davies M et al (2018) Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38:82–99. https://doi.org/10.1109/MM.2018.112130359

    Article  Google Scholar 

  7. Choi BJ et al (2016) High-speed and low-energy nitride memristors. Adv Funct Mater 26:5290–5296. https://doi.org/10.1002/adfm.201600680

    Article  CAS  Google Scholar 

  8. Govoreanu B et al (2011) 10×10 nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation. 2011 International Electron Devices Meeting, Washington, DC, USA, Dec 5–7. 31.6.1–31.6.4. doi:https://doi.org/10.1109/IEDM.2011.6131652

  9. Mehonic A et al (2018) Silicon oxide (SiOx): a promising material for resistance switching? Adv Mater 30:1801187–1801207. https://doi.org/10.1002/adma.201801187

    Article  CAS  Google Scholar 

  10. Bricalli A, Ambrosi E, Laudato M, Maestro M, Rodriguez R, Ielmini D (2018) Resistive switching device technology based on silicon oxide for improved ON–OFF ratio—part II: select devices. IEEE Trans Electron Devices 65:122–128. https://doi.org/10.1109/TED.2017.2776085

    Article  CAS  Google Scholar 

  11. Hong XL, Loy DJ, Dananjaya PA, Tan FN, Ng CM, Lew WS (2018) Oxide-based RRAM materials for neuromorphic computing. J Mater Sci 53:8720–8746. https://doi.org/10.1007/s10853-018-2134-6

    Article  CAS  Google Scholar 

  12. Hickmott TW (1962) Low-frequency negative resistance in thin anodic oxide films. J Appl Phys 33:2669–2682. https://doi.org/10.1063/1.1702530

    Article  CAS  Google Scholar 

  13. Ielmini D (2018) Brain-inspired computing with resistive switching memory (RRAM): devices, synapses and neural networks. Microelectronic Eng 190:44–53. https://doi.org/10.1016/j.mee.2018.01.009

    Article  CAS  Google Scholar 

  14. Wang ZR et al (2018) Threshold switching of Ag or Cu in dielectrics: materials, mechanism, and applications. Adv Funct Mater 28:1704862–1704880. https://doi.org/10.1002/adfm.201704862

    Article  CAS  Google Scholar 

  15. Wang ZR et al (2017) Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat Mater 16:101–108. https://doi.org/10.1038/nmat4756

    Article  CAS  Google Scholar 

  16. Chua L (1971) Memristor-the missing circuit element. IEEE Trans Circuit Theory 18:507–519. https://doi.org/10.1109/TCT.1971.1083337

    Article  Google Scholar 

  17. Li ZN, Tian BY, Xue KH, Wang B, Xu M, Lu H, Sun HJ, Miao XS (2019) Coexistence of digital and analog resistive switching with low operation voltage in oxygen-gradient HfOx memristors. IEEE Electron Device Lett 40:1068–1071. https://doi.org/10.1109/LED.2019.2917935

    Article  CAS  Google Scholar 

  18. Sarkar PK, Prajapat M, Barman A, Bhattacharjee S, Roy A (2016) Multilevel resistance state of Cu/La2O3/Pt forming-free switching devices. J Mater Sci 51:4411–4418. https://doi.org/10.1007/s10853-016-9753-6

    Article  CAS  Google Scholar 

  19. Ma G, Tang X, Zhang H, Zhong Z, Li X, Li J, Su H (2017) Ultra-high ON/OFF ratio and multi-storage on NiO resistive switching device. J Mater Sci 52:238–246. https://doi.org/10.1007/s10853-016-0326-5

    Article  CAS  Google Scholar 

  20. Tsuruoka T, Terabe K, Hasegawa T, Aono M (2010) Forming and switching mechanisms of a cation-migration-based oxide resistive memory. Nanotechnology 21:425205–425212. https://doi.org/10.1088/0957-4484/21/42/425205

    Article  CAS  Google Scholar 

  21. Yang YC, Gao P, Gaba S, Chang T, Pan XQ, Lu W (2012) Observation of conducting filament growth in nanoscale resistive memories. Nat Commun 3:732–739. https://doi.org/10.1038/ncomms1737

    Article  CAS  Google Scholar 

  22. Yan XB, Li K, Yin J, XiaGuoChen YDHXL, Liu ZG (2014) The resistive switching mechanism of ag/srtio3/pt memory cells. Electrochem Solid-State Lett 13:87–89. https://doi.org/10.1149/1.3279689

    Article  CAS  Google Scholar 

  23. Celano U et al (2014) Three-dimensional observation of the conductive filament in nanoscaled resistive memory devices. Nano Lett 14:2401–2406. https://doi.org/10.1021/nl500049g

    Article  CAS  Google Scholar 

  24. Yang Y et al (2014) Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. Nat Commun 5:4232–4240. https://doi.org/10.1038/ncomms5232

    Article  CAS  Google Scholar 

  25. Wei Z et al (2008) Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism. 2008 IEEE International Electron Devices Meeting, San Francisco, CA, USA, Dec 15–17. 1–4. doi:https://doi.org/10.1109/IEDM.2008.4796676

  26. Wong H-SP et al (2012) Metal-oxide RRAM. Proc IEEE 100:1951–1970. https://doi.org/10.1109/JPROC.2012.2190369

    Article  CAS  Google Scholar 

  27. Liu KQ et al (2019) Interfacial redox processes in memristive devices based on valence change and electrochemical metallization. Faraday Discuss 213:41–52. https://doi.org/10.1039/C8FD00113H

    Article  CAS  Google Scholar 

  28. Jeong DS, Hwang CS (2018) Nonvolatile memory materials for neuromorphic intelligent machines. Adv Mater 30:1704729–1704755. https://doi.org/10.1002/adma.201704729

    Article  CAS  Google Scholar 

  29. Chen JY, Hsin CL, Huang CW, Chiu CH, Huang YT, Lin SJ, Wu WW, Chen LJ (2013) Dynamic evolution of conducting nanofilament in resistive switching memories. Nano Lett 13:3671–3677. https://doi.org/10.1021/nl4015638

    Article  CAS  Google Scholar 

  30. Baek K, Park S, Park J, Kim YM, Hwang H, Oh SH (2017) In situ TEM observation on the interface-type resistive switching by electrochemical redox reactions at a TiN/PCMO interface. Nanoscale 9:582–593. https://doi.org/10.1039/C6NR06293H

    Article  CAS  Google Scholar 

  31. Zhang XX, Xu L, Zhang H, Liu J, Tan DW, Chen LL, Ma ZY, Li W (2020) Effect of joule heating on resistive switching characteristic in AlOx cells made by thermal oxidation formation. Nanoscale Res Lett 15:11–18. https://doi.org/10.1186/s11671-019-3229-y

    Article  CAS  Google Scholar 

  32. Russo U, Ielmini D, Cagli C, Lacaita A L, Spiga S, Wiemer C, Perego M, Fanciulli M (2007) Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM. 2007 IEEE International Electron Devices Meeting, Washington, DC, USA, Dec 10–12. 775–778. doi:https://doi.org/10.1109/IEDM.2007.4419062

  33. Mead C (1989) Analog VLSI and neural systems reading. Addison-Wesley

    Google Scholar 

  34. Douglas R, Mahowald M, Mead C (1995) Neuromorphic analogue VLSI. Annu Rev Neurosci 18:255–281. https://doi.org/10.1146/annurev.ne.18.030195.001351

    Article  CAS  Google Scholar 

  35. Burr GW, Shelby RM, Sebastian A, Kim SB, Kim SY, Sidler S, Leblebici Y (2017) Neuromorphic computing using non-volatile memory. Adv Phys-X 2(1):89–124. https://doi.org/10.1080/23746149.2016.1259585

    Article  Google Scholar 

  36. Brandli C, Muller L, Delbruck T (2014) Real-time, high-speed video decompression using a frame- and event-based DAVIS sensor. 2014 IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, VIC, Australia, June 1–5 .686–9. doi:https://doi.org/10.1109/ISCAS.2014.6865228

  37. Boddhu SK, Gallagher JC (2012) Qualitative functional decomposition analysis of evolved neuromorphic flight controllers. Appl Comput Intell Soft Comput 2012:2–22. https://doi.org/10.1155/2012/705483

    Article  Google Scholar 

  38. Jiménez-Fernández A, Cerezuela-Escudero E, Miró-Amarante L, Domínguez-Morales MJ, Gómez-Rodríguez FA, Linares-Barranco A, Jiménez-Moreno G (2017) A binaural neuromorphic auditory sensor for FPGA: A spike signal processing approach. IEEE T Neur Net Lear 28:804–818. https://doi.org/10.1109/TNNLS.2016.2583223

    Article  Google Scholar 

  39. Wang C, Yang ZH et al (2019) A braitenberg vehicle based on memristive neuromorphic circuits. Adv Intell Syst 2:1900103–1900110. https://doi.org/10.1002/aisy.201900103

    Article  Google Scholar 

  40. Tuma T, Pantazi A, Gallo ML, Sebastian A, Eleftheriou E (2016) Stochastic phase-change neurons. Nat Nanotechnol 11:693–699. https://doi.org/10.1038/nnano.2016.70

    Article  CAS  Google Scholar 

  41. Zhao WS, Agnus G, Derycke V, Filoramo A, Bourgoin JP, Gamrat C (2010) Nanotube devices-based crossbar architecture: toward neuromorphic computing. Nanotechnology 21:175202–175208. https://doi.org/10.1088/0957-4484/21/17/175202

    Article  CAS  Google Scholar 

  42. Gale EM (2019) Neuromorphic computation with spiking memristors: habituation, experimental instantiation of logic gates and a novel sequence-sensitive perceptron model. Faraday Discuss 213:521–551. https://doi.org/10.1039/C8FD00111A

    Article  CAS  Google Scholar 

  43. Mosin S (2020) An Accuracy Improvement of the Neuromorphic Functional Models by Using the Parallel ANN Architecture. 2020 IEEE East-West Design & Test Symposium (EWDTS), Varna, Bulgaria, Sept 4-7. 1-6 doi:https://doi.org/10.1109/EWDTS50664.2020.9225034

  44. Maass W (1997) Networks of spiking neurons: The third generation of neural network models. Neural Netw 10:1659–1671. https://doi.org/10.1016/S0893-6080(97)00011-7

    Article  Google Scholar 

  45. Cheng C, Tiw PJ, Cai Y, Yan X, Yang Y, Huang R (2021) In-memory computing with emerging nonvolatile memory devices. Sci China Inform Sci. https://doi.org/10.1007/s11432-021-3327-7

    Article  Google Scholar 

  46. Yu SM (2018) Neuro-inspired computing with emerging nonvolatile memory. Proc IEEE 106:260–285. https://doi.org/10.1109/JPROC.2018.2790840

    Article  CAS  Google Scholar 

  47. Burr GW et al (2015) Experimental demonstration and tolerancing of a large-scale neural network (165000 synapses) using phase-change memory as the synaptic weight element. IEEE Trans Electron Devices 62:3498–3507. https://doi.org/10.1109/TED.2015.2439635

    Article  Google Scholar 

  48. Enquist M, Ghirlanda S (2013) Neural networks and animal behavior. Princeton University Press, Princeton

    Book  Google Scholar 

  49. Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215. https://doi.org/10.1126/science.275.5297.213

    Article  CAS  Google Scholar 

  50. Markram H, Gerstner W, Sjöström PJ (2011) A history of spike-timing-dependent plasticity. Front Synaptic Neurosci 3(4):4. https://doi.org/10.3389/fnsyn.2011.00004

    Article  Google Scholar 

  51. Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472. https://doi.org/10.1016/S0006-3223(98)00190-5

    Article  CAS  Google Scholar 

  52. Kim MK, Lee JS (2018) Short-term plasticity and long-term potentiation in artificial biosynapses with diffusive dynamics. ACS Nano 12:1680–1687. https://doi.org/10.1021/acsnano.7b08331

    Article  CAS  Google Scholar 

  53. Thomson AM (2000) Facilitation, augmentation and potentiation at central synapses. Trends Neurosci 23:305–312. https://doi.org/10.1016/S0166-2236(00)01580-0

    Article  CAS  Google Scholar 

  54. Kumar A, Sharma K, Dixit AR (2019) A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. J Mater Sci 54:5992–6026. https://doi.org/10.1007/s10853-018-03244-3

    Article  CAS  Google Scholar 

  55. Şanlı LI, Yarar B, Bayram V, Gürsel SA (2017) Electrosprayed catalyst layers based on graphene–carbon black hybrids for the next-generation fuel cell electrodes. J Mater Sci 52:2091–2102. https://doi.org/10.1007/s10853-016-0497-0

    Article  CAS  Google Scholar 

  56. Chakrabarti B, Roy T, Vogel EM (2014) Nonlinear switching with ultralow reset power in graphene-insulator-graphene forming-free resistive memories. IEEE Electron Device Lett 35:750–752. https://doi.org/10.1109/LED.2014.2321328

    Article  CAS  Google Scholar 

  57. Yan XB et al (2020) Memristors based on multilayer graphene electrodes for implementing a low-power neuromorphic electronic synapse. J Mater Chem C 8:4926–4933. https://doi.org/10.1039/D0TC00316F

    Article  CAS  Google Scholar 

  58. Liu B, Liu ZW, Chiu IS, Di MF, Wu YR, Wang JC, Hou TH, Lai CS (2018) Programmable synaptic metaplasticity and below femtojoule spiking energy realized in graphene-based neuromorphic memristor. ACS Appl Mater Interfaces 10:20237–20243. https://doi.org/10.1021/acsami.8b04685

    Article  CAS  Google Scholar 

  59. Berry V (2013) Impermeability of graphene and its applications. Carbon 62:1–10. https://doi.org/10.1016/j.carbon.2013.05.052

    Article  CAS  Google Scholar 

  60. Lee J, Du C, Sun K, Kioupakis E, Lu WD (2016) Tuning ionic transport in memristive devices by graphene with engineered nanopores. ACS Nano 10:3571–3579. https://doi.org/10.1021/acsnano.5b07943

    Article  CAS  Google Scholar 

  61. Zhao XL et al (2017) Confining cation injection to enhance CBRAM Performance by nanopore graphene layer. Small 13:1603948–1603956. https://doi.org/10.1002/smll.201603948

    Article  CAS  Google Scholar 

  62. Zhao XL et al (2018) Breaking the current-retention dilemma in cation-based resistive switching devices utilizing graphene with controlled defects. Adv Mater 30:1705193–1705201. https://doi.org/10.1002/adma.201705193

    Article  CAS  Google Scholar 

  63. Liu S et al (2016) Eliminating negative-SET behavior by suppressing nanofilament overgrowth in cation-based memory. Adv Mate 28:10623–10629. https://doi.org/10.1002/adma.201603293

    Article  CAS  Google Scholar 

  64. Tian QL, Zhang XH, Zhao XN, Wang ZQ, Lin Y, Xu HY, Liu YC (2020) Dual buffer layers for developing electrochemical metallization memory with low current and high endurance. IEEE Electron Device Lett 42:308–311. https://doi.org/10.1109/LED.2020.3047837

    Article  Google Scholar 

  65. Suenaga K, Koshino M (2010) Atom-by-atom spectroscopy at graphene edge. Nature 468:1088–1090. https://doi.org/10.1038/nature09664

    Article  CAS  Google Scholar 

  66. Zhou ZY et al (2019) Designing carbon conductive filament memristor devices for memory and electronic synapse applications. Mater Horiz 7:1106–1114. https://doi.org/10.1039/C9MH01684H

    Article  Google Scholar 

  67. Yalagala B, Khandelwal S, Badhulika S (2019) Wirelessly destructible MgO-PVP-Graphene composite based flexible transient memristor for security applications. Mater Sci Semicond Process 104:104673–104682. https://doi.org/10.1016/j.mssp.2019.104673

    Article  CAS  Google Scholar 

  68. He CL et al (2009) Nonvolatile resistive switching in graphene oxide thin films. Appl Phys Lett 95:232101. https://doi.org/10.1063/1.3271177

    Article  CAS  Google Scholar 

  69. Jeong HY et al (2010) Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett 10:381–4386. https://doi.org/10.1021/nl101902k

    Article  CAS  Google Scholar 

  70. Nagareddy VK, Barnes MD, Zipoli F, Lai KT, Alexeev AM, Craciun MF, Wright CD (2017) Multilevel ultrafast flexible nanoscale nonvolatile hybrid graphene oxide-titanium oxide memories. ACS Nano 11:3010–3021. https://doi.org/10.1021/acsnano.6b08668

    Article  CAS  Google Scholar 

  71. Zhou Z, Xiu F, Jiang TF, Xu JX, Chen J, Liu JQ, Huang W (2019) Solution-processable zinc oxide nanorods and a reduced graphene oxide hybrid nanostructure for highly flexible and stable memristor. J Mater Chem C 7:10764–10768. https://doi.org/10.1039/C9TC03840J

    Article  CAS  Google Scholar 

  72. Park Y, Park MJ, Lee JS (2018) Reduced graphene oxide-based artificial synapse yarns for wearable textile device applications. Adv Funct Mater 28:1804123–1804129. https://doi.org/10.1002/adfm.201804123

    Article  CAS  Google Scholar 

  73. Jaafar AH, Kemp NT (2019) Wavelength dependent light tunable resistive switching graphene oxide nonvolatile memory devices. Carbon 153:81–88. https://doi.org/10.1016/j.carbon.2019.07.007

    Article  CAS  Google Scholar 

  74. Sokolov AS, Ali M, Riaz R, Abbas Y, Ko MJ, Choi CH (2019) Silver-Adapted diffusive memristor based on organic nitrogen-doped graphene oxide quantum dots (N-GOQDs) for artificial biosynapse applications. Adv Funct Mater 29:1807504–1807514. https://doi.org/10.1002/adfm.201807504

    Article  CAS  Google Scholar 

  75. Yan XB et al (2018) Graphene oxide quantum dots based memristors with progressive conduction tuning for artificial synaptic learning. Adv Funct Mater 28:1803728–1803737. https://doi.org/10.1002/adfm.201803728

    Article  CAS  Google Scholar 

  76. Yan XB et al (2019) Density effects of graphene oxide quantum dots on characteristics of Zr0.5Hf0.5O2 film memristors. Appl Phys Lett 114:162906. https://doi.org/10.1063/1.5089532

    Article  CAS  Google Scholar 

  77. Brzhezinskaya M, Kapitanova OO, Kononenko OV, Koveshnikov S, Korepanov V, Roshchupkin D (2020) Large-scalable graphene oxide films with resistive switching for non-volatile memory applications. J Alloy Compd 849:156699–156707. https://doi.org/10.1016/j.jallcom.2020.156699

    Article  CAS  Google Scholar 

  78. Romero JF, Toral-Lopez A, Ohata A, Morales DP, Ruiz FG, Godoy A, Rodriguez N (2019) Laser-fabricated reduced graphene oxide memristors. Nanomaterials 9:897–909. https://doi.org/10.3390/nano9060897

    Article  CAS  Google Scholar 

  79. Porro S, Ricciardi C (2015) Memristive behaviour in inkjet printed graphene oxide thin layers. RSC Adv 5:68565–68570. https://doi.org/10.1039/C5RA11058K

    Article  CAS  Google Scholar 

  80. Dong L, Namburu RR, O’Regan TP, Dubey M, Dongare AM (2014) Theoretical study on strain-induced variations in electronic properties of monolayer MoS2. J Mater Sci 49:6762–6771. https://doi.org/10.1007/s10853-014-8370-5

    Article  CAS  Google Scholar 

  81. Shen T, Li F, Xu L, Zhang Z, Qi J (2020) High mobility monolayer MoS2 transistors and its charge transport behaviour under E-beam irradiation. J Mater Sci 55:14315–14325. https://doi.org/10.1007/s10853-020-04977-w

    Article  CAS  Google Scholar 

  82. Shen JQ, Zhou BZ, Wang F, Wan Q, Shan X, Li C, Lin X, Zhang KL (2020) Low consumption two-terminal artificial synapse based on transfer-free single-crystal MoS2 memristor. Nanotechnology 31:265202–265225. https://doi.org/10.1088/1361-6528/ab82d6

    Article  CAS  Google Scholar 

  83. He HK, Yang R, Zhou W, Huang HM, Xiong J, Gan L, Zhai YT, Guo X (2018) Photonic potentiation and electric habituation in ultrathin memristive synapses based on monolayer MoS2. Small 14:1800079–1800086. https://doi.org/10.1002/smll.201800079

    Article  CAS  Google Scholar 

  84. Xu RJ et al (2019) Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV. Nano Lett 19:2411–2417. https://doi.org/10.1021/acs.nanolett.8b05140

    Article  CAS  Google Scholar 

  85. Wang KY et al (2020) A Pure 2H-MoS2 nanosheet-based memristor with low power consumption and linear multilevel storage for artificial synapse emulator. Adv Electron Mater 6:1901342–1901349. https://doi.org/10.1002/aelm.201901342

    Article  CAS  Google Scholar 

  86. Hus SM et al (2021) Observation of single-defect memristor in an MoS2 atomic sheet. Nat Nanotechnol 16:58–62. https://doi.org/10.1038/s41565-020-00789-w

    Article  CAS  Google Scholar 

  87. Feng XW et al (2019) A Fully printed flexible MOS2 memristive artificial synapse with femtojoule switching energy. Adv Electron Mater 5:1900740–1900748. https://doi.org/10.1002/aelm.201900740

    Article  CAS  Google Scholar 

  88. Bessonov AA, Kirikova MN, Petukhov DI, Allen M, Ryhänen T, Bailey MJA (2015) Layered memristive and memcapacitive switches for printable electronics. Nat Mater 14:199–204. https://doi.org/10.1038/nmat4135

    Article  CAS  Google Scholar 

  89. Wang M et al (2018) Robust memristors based on layered two-dimensional materials. Nat Electron 1:130–136. https://doi.org/10.1038/s41928-018-0021-4

    Article  CAS  Google Scholar 

  90. Yalagala B, Sahatiya P, Mattela V, Badhulika S (2019) Ultra-low cost, large area graphene/mos2 -based piezotronic memristor on paper: a systematic study for both direct current and alternating current inputs. ACS Appl Electron Mate 1:883–891. https://doi.org/10.1021/acsaelm.9b00086

    Article  CAS  Google Scholar 

  91. Wu FC et al (2019) Interface engineering via MOS2 insertion layer for improving resistive switching of conductive-bridging random access memory. Adv Electron Mater 5:1800747–1800753. https://doi.org/10.1002/aelm.201800747

    Article  CAS  Google Scholar 

  92. Krishnaprasad A et al (2019) Electronic synapses with near-linear weight update using MoS2 /graphene memristors. Appl Phys Lett 115:103104. https://doi.org/10.1063/1.5108899

    Article  CAS  Google Scholar 

  93. Li Y et al (2019) Aerosol Jet Printed WSe2 Based RRAM on Kapton Suitable for Flexible Monolithic Memory Integration. 2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Glasgow, United Kingdom, Jul 8–10. 1–3. doi:https://doi.org/10.1109/FLEPS.2019.8792256

  94. Sivan M et al (2019) All WSe2 1T1R resistive RAM cell for future monolithic 3D embedded memory integration. Nat Commun 10:5201–5212. https://doi.org/10.1038/s41467-019-13176-4

    Article  CAS  Google Scholar 

  95. Datye IM, Rojo MM, Yalon E, Deshmukh S, Mleczko MJ, Pop E (2020) Localized heating and switching in MoTe2-based resistive memory devices. Nano Lett 20:1461–1467. https://doi.org/10.1021/acs.nanolett.9b05272

    Article  CAS  Google Scholar 

  96. Yan XB et al (2019) Vacancy-induced synaptic behavior in 2D WS2 nanosheet-based memristor for low-power neuromorphic computing. Small 15:1901423–1901431. https://doi.org/10.1002/smll.201901423

    Article  CAS  Google Scholar 

  97. Yan XB et al (2019) Robust Ag/ZrO2/WS2/Pt memristor for neuromorphic computing. ACS Appl Mater Interfaces 11:48029–48038. https://doi.org/10.1021/acsami.9b17160

    Article  CAS  Google Scholar 

  98. Wu XH et al (2019) Thinnest nonvolatile memory based on monolayer h-BN. Adv Mater 31:1806790–1806796. https://doi.org/10.1002/adma.201806790

    Article  CAS  Google Scholar 

  99. Zhuang PP et al (2020) Nonpolar resistive switching of multilayer-hBN-based memories. Adv Electron Mater 6:1900979–1900983. https://doi.org/10.1002/aelm.201900979

    Article  CAS  Google Scholar 

  100. Chen SC et al (2020) Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks. Nat Electron 3:638–645. https://doi.org/10.1038/s41928-020-00473-w

    Article  CAS  Google Scholar 

  101. Zhang DJ, Yeh CH, Cao W, Banerjee K (2021) 0.5T0.5R—an ultracompact RRAM cell uniquely enabled by van der waals heterostructures. IEEE Trans Electron Devices 68:2033–2040. https://doi.org/10.1109/TED.2021.3057598

    Article  CAS  Google Scholar 

  102. Zhu KC et al (2019) Graphene-boron nitride–graphene cross-point memristors with three stable resistive states. ACS Appl Mater Interfaces 11:37999–38005. https://doi.org/10.1021/acsami.9b04412

    Article  CAS  Google Scholar 

  103. Sun LF et al (2020) Ultralow switching voltage slope based on two-dimensional materials for integrated memory and neuromorphic applications. Nano Energy 69:104472–104477. https://doi.org/10.1016/j.nanoen.2020.104472

    Article  CAS  Google Scholar 

  104. Li CS, Kuo SW, Wu YT, Fu FY, Ni IC, Chen MH, Wu CI (2020) Forming-free, nonvolatile, and flexible resistive random-access memory using bismuth iodide/van der waals materials heterostructures. Adv Mater Interfaces 7:2001146–2001151. https://doi.org/10.1002/admi.202001146

    Article  CAS  Google Scholar 

  105. Rehman S, Khan MF, Aftab S, Kim H, Eom J, Kim DK (2019) Thickness-dependent resistive switching in black phosphorus CBRAM. J Mater Chem C 7:725–732. https://doi.org/10.1039/C8TC04538K

    Article  CAS  Google Scholar 

  106. Zhou Y et al (2020) Black phosphorus based multicolor light-modulated transparent memristor with enhanced resistive switching performance. ACS Appl Mater Interfaces 12:25108–25114. https://doi.org/10.1021/acsami.0c04493

    Article  CAS  Google Scholar 

  107. Wang YD et al (2019) High on/off ratio black phosphorus based memristor with ultra-thin phosphorus oxide layer. Appl Phys Lett 115:193503. https://doi.org/10.1063/1.5115531

    Article  CAS  Google Scholar 

  108. Cao YM, Tian XY, Gu JW, Liu B, Zhang B, Song SN, Fan F, Chen Y (2018) Covalent functionalization of black phosphorus with conjugated polymer for information storage. Angew Chem 130:4633–4638. https://doi.org/10.1002/anie.201712675

    Article  CAS  Google Scholar 

  109. Chen WL et al (2020) Anti-oxidative passivation and electrochemical activation of black phosphorus via covalent functionalization and its nonvolatile memory application. J Mater Chem C 8:7309–7313. https://doi.org/10.1039/D0TC01660H

    Article  CAS  Google Scholar 

  110. Yang J, Li H, Cheng JL, He T, Li JS, Wang B (2021) Nanocellulose intercalation to boost the performance of MXene pressure sensor for human interactive monitoring. J Mater Sci 56:13859–13873. https://doi.org/10.1007/s10853-021-05909-y

    Article  CAS  Google Scholar 

  111. Pi MH, Jiang LC, Wang ZS, Cui W, Shi LY, Ran R (2021) Robust and ultrasensitive hydrogel sensors enhanced by MXene/cellulose nanocrystals. J Mater Sci 56:8871–8886. https://doi.org/10.1007/s10853-020-05644-w

    Article  CAS  Google Scholar 

  112. Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y (2017) Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater 29:7633–7644. https://doi.org/10.1021/acs.chemmater.7b02847

    Article  CAS  Google Scholar 

  113. Wang L, Tian M, Zhang Y, Sun F, Qi X, Liu Y, Qu L (2020) Helical core-sheath elastic yarn-based dual strain/humidity sensors with MXene sensing layer. J Mater Sci 55:6187–6194. https://doi.org/10.1007/s10853-020-04425-9

    Article  CAS  Google Scholar 

  114. Tang Q, Zhou Z, Shen PW (2012) Are MXenes promising anode materials for li ion batteries? computational studies on electfronic properties and li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J Am Chem Soc 134:16909–16916. https://doi.org/10.1021/ja308463r

    Article  CAS  Google Scholar 

  115. Zhao TS et al (2021) Bio-Inspired photoelectric artificial synapse based on two-dimensional Ti3C2Tx MXenes floating gate. Adv Funct Mater 31:2106000. https://doi.org/10.1002/adfm.202106000

    Article  CAS  Google Scholar 

  116. Yan XB et al (2019) A new memristor with 2D Ti3C2Tx MXene flakes as an artificial bio-synapse. Small 15:1900107–1900115. https://doi.org/10.1002/smll.201900107

    Article  CAS  Google Scholar 

  117. Chen YH et al (2019) Realization of artificial neuron using mxene bi-directional threshold switching memristors. IEEE Electron Device Lett 40:1686–1689. https://doi.org/10.1109/LED.2019.2936261

    Article  CAS  Google Scholar 

  118. Ju JH et al (2021) Two-dimensional MXene synapse for brain-inspired neuromorphic computing. Small 17:2102595. https://doi.org/10.1002/smll.202102595

    Article  CAS  Google Scholar 

  119. Safaei M, Shishehbore MR (2021) Energy conversion and optical applications of MXene quantum dots. J Mater Sci 56:17942–17978. https://doi.org/10.1007/s10853-021-06428-6

    Article  CAS  Google Scholar 

  120. Lian XJ et al (2019) Resistance switching characteristics and mechanisms of MXene/SiO2 structure-based memristor. Appl Phys Lett 115:063501. https://doi.org/10.1063/1.5087423

    Article  CAS  Google Scholar 

  121. Lian XJ et al (2020) Electrical properties and biological synaptic simulation of Ag/MXene/SiO2/Pt RRAM devices. Electronics 9:2098–2107. https://doi.org/10.3390/electronics9122098

    Article  CAS  Google Scholar 

  122. Wang KY et al (2020) MXene Ti3C2 memristor for neuromorphic behavior and decimal arithmetic operation applications. Nano Energy 79:105453. https://doi.org/10.1016/j.nanoen.2020.105453

    Article  CAS  Google Scholar 

  123. He N et al (2021) V2C-based memristor for applications of low power electronic synapse. IEEE Electron Device Lett 42:319–322. https://doi.org/10.1109/LED.2021.3049676

    Article  CAS  Google Scholar 

  124. Wan X, Xu W, Zhang MC, He N, Lian XJ, Hu ET, Xu JG, Tong Y (2020) Unsupervised learning implemented by Ti3C2-MXene-based memristive neuromorphic system. ACS Appl Electron Mater 2:3497–3501. https://doi.org/10.1021/acsaelm.0c00705

    Article  CAS  Google Scholar 

  125. Wang L et al (2020) Electrical conduction characteristic of a 2D MXene device with Cu/Cr2C/TiN structure based on density functional theory. Materials 13:3671. https://doi.org/10.3390/ma13173671

    Article  CAS  Google Scholar 

  126. Miranda EA et al (2010) Model for the resistive switching effect in HfO2 MIM structures based on the transmission properties of narrow constrictions. IEEE Electron Device Lett 31:609–611. https://doi.org/10.1109/LED.2010.2046310

    Article  CAS  Google Scholar 

  127. Lee YH et al (2010) Evidence and solution of over-RESET problem for HfOx based resistive memory with sub-ns switching speed and high endurance. 2010 International Electron Devices Meeting, San Francisco, CA, USA, Dec 6–8. 19.7.1–19.7.4 doi: https://doi.org/10.1109/IEDM.2010.5703395

  128. Lian XJ, Wang M, Rao MY, Yan P, Yang JJ, Miao F (2017) Characteristics and transport mechanisms of triple switching regimes of TaOx memristor. Appl Phys Lett 110:173504. https://doi.org/10.1063/1.4982593

    Article  CAS  Google Scholar 

  129. Yang JJ et al (2010) High switching endurance in TaOx memristive devices. Appl Phys Lett 97:232102. https://doi.org/10.1063/1.3524521

    Article  CAS  Google Scholar 

  130. Yoshida C, Tsunoda K, Noshiro H, Sugiyama Y (2007) High speed resistive switching in Pt/TiO2/TiN film for nonvolatile memory application. Appl Phys Lett 91:223510. https://doi.org/10.1063/1.2818691

    Article  CAS  Google Scholar 

  131. Song SJ et al (2013) Real-time identification of the evolution of conducting nano-filaments in TiO2 thin film ReRAM. Sci Rep 3:3433. https://doi.org/10.1038/srep03443

    Article  Google Scholar 

  132. Choi BJ et al (2020) Electrical performance and scalability of Pt dispersed SiO2 nanometallic resistance switch. Nano Lett 13:3213–3217. https://doi.org/10.1021/nl401283q

    Article  CAS  Google Scholar 

  133. Li YB, Sinitskii A, Tour JM (2008) Electronic two-terminal bistable graphitic memories. Nat Mater 7:966–971. https://doi.org/10.1038/nmat2331

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (61804079, 61964012), in part by the Natural Science Foundation of Jiangsu Province (BK20211273), in part by the Policy guidance international cooperation project of Jiangsu Province (BZ2021031), in part by the open research fund of the National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology (KFJJ20200102), in part by the Youth Key Project of Natural Science Foundation of Jiangxi Province (20202ACBL21200), in part by the Research foundation of Nanjing University of Posts and Telecommunications (NY220112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojuan Lian.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Shen, X., Gao, Z. et al. Review of applications of 2D materials in memristive neuromorphic circuits. J Mater Sci 57, 4915–4940 (2022). https://doi.org/10.1007/s10853-022-06954-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-06954-x

Navigation