Skip to main content
Log in

Organic Memristor Based on High Planar Cyanostilbene/Polymer Composite Films

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Organic memristors with low power consumption, fast write/erasure speed, and complementary metal-oxide-semiconductor(CMOS) compatibility have attracted tremendous attention to mimic biological synapses to realize neuromorphic computation in recent years. In this paper, organic resistive switching memory(ORSM) based on (Z)-3-(naphthalen-2-yl)-2-(4-nitrophenyl)acrylonitrile(NNA) and polymer poly(N-vinylcarbazole)(PVK) composite film was prepared by spin-coating method. Device performance based on NNA:PVK composite films with different mass fractions of NNA were systematically investigated. The ORSM based on PVK:40%(mass fraction) NNA composite film exhibited non-volatile and bipolar memory properties with a switching ratio(Ion/Ioff) of 24.1, endurance of 68 times and retention time of 104 s, a “SET” voltage(Vset) of −0.55 V and a “RESET” voltage(Vreset) of 2.35 V. The resistive switching was ascribed to the filling and vacant process of the charge traps induced by NNA and the inherent traps in PVK bulk. The holes trapping and de-trapping process occurred when the device was applied with a negative or positive bias, which caused the transforming of the conductive way of charges, that is the resistive behaviors in the macroscopic. This study provides a promising platform for the fabrication of ORSM with high performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang Z., Wang Z., Shi T., Bi C., Rao F., Cai Y., Liu Q., Wu H., Zhou P., InfoMat, 2020, 2, 261

    Article  CAS  Google Scholar 

  2. Service R. F., Science, 2018, 361, 321

    Article  Google Scholar 

  3. Debenedictis E. P., Computer, 2019, 52, 114

    Article  Google Scholar 

  4. Chua L. O., IEEE Trans. Circuit Theory, 1971, 18, 507

    Article  Google Scholar 

  5. Strukov D. B., Snider G. S., Stewart D. R., Williams R. S., Nature., 2008, 453, 80

    Article  CAS  Google Scholar 

  6. Kim K., Chen C., Truong Q., Shen A. M., Chen Y., Adv. Mater., 2013, 25, 201203116

    Google Scholar 

  7. Wu C., Kim T. W., Choi H. Y., Strukov D. B., Yang, J. J., Nat. Commun., 2017, 8, 752

    Article  Google Scholar 

  8. Pickett M. D., Ribeiro G. M., Williams R. S., Nat. Mater., 2013, 12, 114

    Article  CAS  Google Scholar 

  9. Kuzum D., Jeyasingh R. G. D., Lee B., Wong H.-S. P., Nano Lett., 2011, 12, 2179

    Article  Google Scholar 

  10. Younis A., Lin C, Guan X., Shahrokhi S., Huang C, Wang Y., He T., Singh S., Hu L., Retamal J. R. D., He J. H., Wu T., Adv. Mater., 2021, 33, 2005000

    Article  CAS  Google Scholar 

  11. Sangwan V. K., Lee H. S., Bergeron H., Balla I., Beck M. E., Chen K. S., Hersam M. C. Nature, 2018, 554, 500

    Article  CAS  Google Scholar 

  12. Xing Y., Shi C., Zhao J., Qiu W., Lin N., Wang J., Yan X., Yu W., Liu X., Small, 2017, 13, 1702390

    Article  Google Scholar 

  13. Li Y., Wang J., Yang Q., Shen G., Adv. Sci., 2022, 9, 2202123

    Article  CAS  Google Scholar 

  14. Yao Z., Pan L., Liu L., Zhang J., Lin., Ye Y., Zhang Z., Xiang S., Chen B., Adv. Sci., 2019, 5, eaaw4515

  15. Gismatulin A. A., Orlov O. M., Gritsenko V. A., Kruchinin V. N., Mizginov D. S., Krasnikov G. Y., Appl. Phys. Lett., 2020, 116, 203502

    Article  CAS  Google Scholar 

  16. Wang Z., Chen B., Shen J., Chen W., Liu Y., Gong S., Zhou J., Chem. J. Chinese Universities, 2020, 41(8), 1908

    CAS  Google Scholar 

  17. Li Y., Qian Q., Zhu X., Li Y., Zhang M., Li J., Ma C., Li H., Lu J., Zhang Q., InfoMat., 2020, 2, 995

    Article  CAS  Google Scholar 

  18. Hwang B., Lee J-S., Adv. Electron. Mater., 2019, 5, 1800519

    Article  Google Scholar 

  19. Gao S., Yi X., Shang J., Liu G., Li R., Chem. Soc. Rev., 2019, 48, 1531

    Article  CAS  Google Scholar 

  20. Lian H., Cheng X., Hao H., Han J., Lau M., Li Z., Zhou Z., Dong Q., Wong W., Chem. Soc. Rev., 2022, 51, 1926

    Article  CAS  Google Scholar 

  21. Zhou J., Li W., Chen Y., Lin Y.H., Yi M., Li J., Qian Y., Guo Y., Cao K., Xie L., Ling H., Ren Z., Xu J., Zhu J., Yan S., Huang W., Adv. Mater., 2021, 33, 2006201

    Article  CAS  Google Scholar 

  22. Zhang B., Fan F., Xue W., Liu G., Fu Y., Zhuang X., Xu X., Gu J., Li R., Chen Y., Nat. Commun., 2019 10, 736

    Article  CAS  Google Scholar 

  23. Jang B. C., Seong H., Kim S. K., Kim J. Y., Koo B. J., Choi J., Yang S. Y., Im S. G., Choi S. Y., ACS Appl. Mater. Inter., 2016, 8, 12951

    Article  CAS  Google Scholar 

  24. Wang H., Zhu B., Ma X., Hao Y., Chen X., Small, 2016, 12, 2715

    Article  CAS  Google Scholar 

  25. Li W., Zhu H., Sun T., Qu W., Fan X., Gao Z., Shi W., Wei B., J. Phys. Chem. C, 2022, 126, 12897

    Article  CAS  Google Scholar 

  26. Yuan L, Liu S., Chen W., Fan Fei., Liu G., Adv. Electron. Mater., 2021, 7, 2100432

    Article  CAS  Google Scholar 

  27. Pan S., Zhu Z., Yu H., Lan W., Wei B., Guo K., J. Mater. Chem. C, 2021, 9, 5643

    Article  CAS  Google Scholar 

  28. Ling Q., Lim S., Song Y., Zhu C X., Chan D., Kang E., Neoh K., Langmuir, 2007, 23, 312

    Article  CAS  Google Scholar 

  29. Su P., Huang L., Liu J., Chen Y., Xiao L., Kuang D., Mayor M., Su C., J. Mater. Chem. A, 2017, 5, 1913

    Article  CAS  Google Scholar 

  30. Urieta-Mora J., García-Benito I., Molina-Ontoria A., Martín N., Chem. Soc. Rev., 2018, 47, 8541

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ji Hua Laboratory Science Program, China(No. X190251UZ190), the Foundation of Shanxi Datong University Doctoral Research, the Graduate Education Innovation Project of Shanxi Province, China (No.2022Y761), and the Graduate Education Innovation Project of Shanxi Datong University, China(Nos.22CX02, 22CX16).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Wei, Hanfei Gao or Yuchen Wu.

Ethics declarations

The authors declare no conflicts of interest.

Supporting Information

40242_2023_2352_MOESM1_ESM.pdf

Special Issue of Bio-inspired Material Chemistry: Study on the Memristor Properties of High Planar Cyanostyylene/Polymer Composite Films

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Li, W., Wang, X. et al. Organic Memristor Based on High Planar Cyanostilbene/Polymer Composite Films. Chem. Res. Chin. Univ. 39, 121–126 (2023). https://doi.org/10.1007/s40242-023-2352-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-023-2352-6

Keywords

Navigation