Skip to main content
Log in

Mechanics of flexible and stretchable piezoelectrics for energy harvesting

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

As rapid development in wearable/implantable electronic devices benefit human life in daily health monitoring and disease treatment medically, all kinds of flexible and/or stretchable electronic devices are booming, together with which is the demanding of energy supply with similar mechanical property. Due to its ability in converting mechanical energy lying in human body into electric energy, energy harvesters based on piezoelectric materials are promising for applications in wearable/ implantable device’s energy supply in a renewable, clean and life-long way. Here the mechanics of traditional piezoelectrics in energy harvesting is reviewed, including why piezoelectricity is the choice for minor energy harvesting to power the implantable/wearable electronics and how. Different kinds of up to date flexible piezoelectric devices for energy harvesting are introduced, such as nanogenerators based on ZnO and thin and conformal energy harvester based on PZT. A detailed theoretical model of the flexible thin film energy harvester based on PZT nanoribbons is summarized, together with the in vivo demonstration of energy harvesting by integrating it with swine heart. Then the initial researches on stretchable energy harvesters based on piezoelectric material in wavy or serpentine configuration are introduced as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu S, Zhang Y, Jia L, et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science, 2014, 344: 70–74

    Article  ADS  Google Scholar 

  2. Chung H J, Sulkin M S, Kim J S, et al. Stretchable, multiplexed pH sensors with demonstrations on rabbit and human hearts undergoing ischemia. Adv Healthc Mater, 2014, 3: 59–68

    Article  Google Scholar 

  3. Gao L, Zhang Y, Malyarchuk V, et al. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nat Commun, 2014, 5: 4938

    Article  ADS  Google Scholar 

  4. Huang X, Liu Y, Chen K, et al. Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small, 2014, 10: 3083–3090

    Article  Google Scholar 

  5. Xu L, Gutbrod S R, Bonifas A P, et al. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat Commun, 2014, 5: 3329

    ADS  Google Scholar 

  6. Park S I, Xiong Y, Kim R H, et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science, 2009, 325: 977–981

    Article  ADS  Google Scholar 

  7. Kim D H, Ghaffari R, Lu N, et al. Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. P Natl Acad Sci USA, 2012, 109: 19910–19915

    Article  ADS  Google Scholar 

  8. Toprak A, Tigli O. Piezoelectric energy harvesting: State-of-the-art and challenges. Appl Phys Rev, 2014, 1: 031104

    Article  Google Scholar 

  9. Anton S R, Sodano H A. A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct, 2007, 16: R1–R21

    Article  ADS  Google Scholar 

  10. Chalasani S, Conrad J M. A survey of energy harvesting sources for embedded systems. In: The Proceedings of Southeastcon, 2008 IEEE. New York: IEEE, 2008. 442–447

    Chapter  Google Scholar 

  11. Saadon S, Sidek O. A review of vibration-based MEMS piezoelectric energy harvesters. Energy Conv Manag, 2011, 52: 500–504

    Article  Google Scholar 

  12. Kim H S, Kim J H, Kim J. A review of piezoelectric energy harvesting based on vibration. Int J Precis Eng Manuf, 2011, 12: 1129–1141

    Article  Google Scholar 

  13. Liu W, Han M D, Meng B, et al. Low frequency wide bandwidth MEMS energy harvester based on spiral-shaped PVDF cantilever. Sci China-Phys Mech Astron, 2014, 57: 1068–1072

    Article  ADS  Google Scholar 

  14. Han M D, Zhang X S, Liu W, et al. Low-frequency wide-band hybrid energy harvester based on piezoelectric and triboelectric mechanism. Sci China-Phys Mech Astron, 2013, 56: 1835–1841

    Google Scholar 

  15. Pfenniger A, Jonsson M, Zurbuchen A, et al. Energy harvesting from the cardiovascular system, or how to get a little help from yourself. Ann Biomed Eng, 2013, 41: 2248–2263

    Article  Google Scholar 

  16. Cadei A, Dionisi A, Sardini E, et al. Kinetic and thermal energy harvesters for implantable medical devices and biomedical autonomous sensors. Meas Sci Technol, 2014, 25: 012003

    Article  ADS  Google Scholar 

  17. Gao R X. Vibration-based energy extraction for sensor powering: Design, analysis, and experimental evaluation. In: The Proceedings of Smart Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems. San Diego: International Society for Optics and Photonics, 2005. 794–801

    Chapter  Google Scholar 

  18. Jeon Y B, Sood R, Jeong J H, et al. MEMS power generator with transverse mode thin film PZT. Sensor Actuat A-Phys, 2005, 122: 16–22

    Article  Google Scholar 

  19. Liu J Q, Fang H B, Xu Z Y, et al. A MEMS-based piezoelectric power generator array for vibration energy harvesting. Microelectr J, 2008, 39: 802–806

    Article  Google Scholar 

  20. Crossley S, Whiter R A, Kar-narayan S. Polymer-based nanopiezoelectric generators for energy harvesting applications. Mater Sci Tech, 2014, 30: 1613–1624

    Article  Google Scholar 

  21. Riemer R, Shapiro A. Biomechanical energy harvesting from human motion: Theory, state of the art, design guidelines, and future directions. J Neuroeng Rehabil, 2011, 8: 22, doi:10.1186/1743-0003-8-22

    Article  Google Scholar 

  22. Paradiso J A, Starner T. Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput, 2005, 4: 18–27

    Article  Google Scholar 

  23. Shenck N S, Paradiso J A. Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro, 2001, 21: 30–42

    Article  Google Scholar 

  24. Kymissis J, Kendall C, Paradiso J, et al. Parasitic power harvesting in shoes. In: The Proceedings of Wearable Computers 1998, on Second International Symposium. Los Alamitos: IEEE, 1998. 132–139

    Google Scholar 

  25. Donelan J M, Naing V, Li Q G, et al. Biomechanical Energy Harvesting. New York: IEEE, 2009. 1–4

    Google Scholar 

  26. Donelan J M, Li Q, Naing V, et al. Biomechanical energy harvesting: Generating electricity during walking with minimal user effort. Science, 2008, 319: 807–810

    Article  ADS  Google Scholar 

  27. Niu P. Evaluation of motions and actuation methods for biomechanical energy harvesting. In: The Proceedings of Power Electronics Specialists Conference 2004. New York: IEEE, 2004. 3: 2100–2106

    Google Scholar 

  28. Granstrom J, Feenstra J, Sodano H A, et al. Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Mater Struct, 2007, 16: 1810–1820

    Article  ADS  Google Scholar 

  29. Patel I, Siores E, Shah T. Utilisation of smart polymers and ceramic based piezoelectric materials for scavenging wasted energy. Sensor Actuat A-Phys, 2010, 159: 213–218

    Article  Google Scholar 

  30. Swallow L M, Luo J K, Siores E, et al. A piezoelectric fibre composite based energy harvesting device for potential wearable applications. Smart Mater Struct, 2008, 17: 025017

    Article  ADS  Google Scholar 

  31. Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312: 242–246

    Article  ADS  Google Scholar 

  32. Wang X, Song J, Liu J, et al. Direct-current nanogenerator driven by ultrasonic waves. Science, 2007, 316: 102–105

    Article  ADS  Google Scholar 

  33. Wang Z L, Wu W. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew Chem Int Edit, 2012, 51: 11700–11721

    Article  Google Scholar 

  34. Wang X. Piezoelectric nanogenerators-Harvesting ambient mechanical energy at the nanometer scale. Nano Energy, 2012, 1: 13–24

    Article  Google Scholar 

  35. Zhou J, Xu N S, Wang Z L. Dissolving behavior and stability of ZnO wires in biofluids: A study on biodegradability and biocompatibility of ZnO nanostructures. Adv Mater, 2006, 18: 2432–2435

    Article  Google Scholar 

  36. Qin Y, Wang X, Wang Z L. Microfibre-nanowire hybrid structure for energy scavenging. Nature, 2008, 451: 809–813

    Article  ADS  Google Scholar 

  37. Zhu G, Yang R, Wang S, et al. Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett, 2010, 10: 3151–3155

    Article  ADS  Google Scholar 

  38. Xu S, Qin Y, Xu C, et al. Self-powered nanowire devices. Nat Nanotechnol, 2010, 5: 366–373

    Article  MathSciNet  ADS  Google Scholar 

  39. Chen X, Xu S, Yao N, et al. 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett, 2010, 10: 2133–2137

    Article  ADS  Google Scholar 

  40. Wu W, Bai S, Yuan M, et al. Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. ACS Nano, 2012, 6: 6231–6235

    Article  Google Scholar 

  41. Qi Y, Jafferis N T, Lyons K J R, et al. Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett, 2010, 10: 524–528

    Article  ADS  Google Scholar 

  42. Dagdeviren C, Yang B D, Su Y, et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc Natl Acad Sci USA, 2014, 111: 1927–1932

    Article  ADS  Google Scholar 

  43. Kim S-G, Priya S, Kanno I. Piezoelectric MEMS for energy harvesting. MRS Bull, 2012, 37: 1039–1050

    Article  Google Scholar 

  44. Marin A, Bressers S, Priya S. Multiple cell configuration electromagnetic vibration energy harvester. J Phys D-Appl Phys, 2011, 44: 295501

    Article  Google Scholar 

  45. Beeby S P, Tudor M J, White N M. Energy harvesting vibration sources for microsystems applications. Meas Sci Technol, 2006, 17: R175–R195

    Article  Google Scholar 

  46. Liang Z, Xu C D, Ren B, et al. Optimization of cantilevered piezoelectric energy harvester with a fixed resonance frequency. Sci China Tech Sci, 2014, 57: 1093–1100

    Article  Google Scholar 

  47. Huang X, Li L J, Zhang Y. Modeling the open circuit output voltage of piezoelectric nanogenerator. Sci China Tech Sci, 2013, 56: 2622–2629

    Article  MathSciNet  Google Scholar 

  48. Tang L, Yang Y, Soh C K. Toward broadband vibration-based energy harvesting. J Intel Mat Syst Str, 2010, 21: 1867–1897

    Article  Google Scholar 

  49. Zhu D, Tudor M J, Beeby S P. Strategies for increasing the operating frequency range of vibration energy harvesters: A review. Meas Sci Technol, 2010, 21: 022001

    Article  ADS  Google Scholar 

  50. Shahruz S M. Design of mechanical band-pass filters for energy scavenging. J Sound Vib, 2006, 292: 987–998

    Article  ADS  Google Scholar 

  51. Cottone F, Vocca H, Gammaitoni L. Nonlinear energy harvesting. Phys Rev Lett, 2009, 102: 080601

    Article  ADS  Google Scholar 

  52. Harne R L, Wang K W. A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater Struct, 2013, 22: 023001

    Article  ADS  Google Scholar 

  53. Pellegrini S P, Tolou N, Schenk M, et al. Bistable vibration energy harvesters: A review. J Intel Mat Syst Str, 2013, 24: 1303–1312

    Article  Google Scholar 

  54. Daqaq M F, Masana R, Erturk A, et al. On the role of nonlinearities in vibratory energy harvesting: A critical review and discussion. Appl Mech Rev, 2014, 66: 040801

    Article  ADS  Google Scholar 

  55. Mann B P, Barton D A W, Owens B A M. Uncertainty in performance for linear and nonlinear energy harvesting strategies. J Intel Mat Syst Str, 2012, 23: 1451–1460

    Article  Google Scholar 

  56. Mendez V, Campos D, Horsthemke W. Efficiency of harvesting energy from colored noise by linear oscillators. Phys Rev E, 2013, 88: 022124

    Article  ADS  Google Scholar 

  57. Karami M A, Inman D J. Equivalent damping and frequency change for linear and nonlinear hybrid vibrational energy harvesting systems. J Sound Vib, 2011, 330: 5583–5597

    Article  ADS  Google Scholar 

  58. Cottone F, Gammaitoni L, Vocca H, et al. Piezoelectric buckled beams for random vibration energy harvesting. Smart Mater Struct, 2012, 21: 035021

    Article  ADS  Google Scholar 

  59. Daqaq M F. On intentional introduction of stiffness nonlinearities for energy harvesting under white Gaussian excitations. Nonlinear Dyn, 2012, 69: 1063–1079

    Article  Google Scholar 

  60. Kumar P, Narayanan S, Adhikari S, et al. Fokker-Planck equation analysis of randomly excited nonlinear energy harvester. J Sound Vib, 2014, 333: 2040–2053

    Article  ADS  Google Scholar 

  61. Martens W, Von Wagner U, Litak G. Stationary response of nonlinear magneto-piezoelectric energy harvester systems under stochastic excitation. Eur Phys J-Spec Top, 2013, 222: 1665–1673

    Article  Google Scholar 

  62. Ali S F, Adhikari S, Friswell M I, et al. The analysis of piezomagnetoelastic energy harvesters under broadband random excitations. J Appl Phys, 2011, 109: 074904

    Article  ADS  Google Scholar 

  63. Xu M, Jin X, Wang Y, et al. Stochastic averaging for nonlinear vibration energy harvesting system. Nonlinear Dynam, 2014, 78: 1451–1459

    Article  MathSciNet  Google Scholar 

  64. Tian Y P, Wang Y, Jin X L, et al. Optimal load resistance of a randomly excited nonlinear electromagnetic energy harvester with Coulomb friction. Smart Mater Struct, 2014, 23: 095001

    Article  ADS  Google Scholar 

  65. Choi W J, Jeon Y, Jeong J H, et al. Energy harvesting MEMS device based on thin film piezoelectric cantilevers. J Electroceram, 2006, 17: 543–548

    Article  Google Scholar 

  66. Twiefel J, Westermann H. Survey on broadband techniques for vibration energy harvesting. J Intel Mat Syst Str, 2013, 24: 1291–1302

    Article  Google Scholar 

  67. Hajati A, Kim S G. Ultra-wide bandwidth piezoelectric energy harvesting. Appl Phys Lett, 2011, 99: 083105

    Article  ADS  Google Scholar 

  68. Marzencki M, Defosseux M, Basrour S. MEMS vibration energy harvesting devices with passive resonance frequency adaptation capability. J Microelectromech Syst, 2009, 18: 1444–1453

    Article  Google Scholar 

  69. Ando B, Baglio S, Trigona C, et al. Nonlinear mechanism in MEMS devices for energy harvesting applications. J Micromech Microeng, 2010, 20: 125020

    Article  Google Scholar 

  70. Gao P X, Song J, Liu J, et al. Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices. Adv Mater, 2007, 19: 67–72

    Article  Google Scholar 

  71. Yang R, Qin Y, Dai L, et al. Power generation with laterally packaged piezoelectric fine wires. Nat Nanotechnol, 2009, 4: 34–39

    Article  ADS  Google Scholar 

  72. Hu Y, Zhang Y, Xu C, et al. High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display. Nano Lett, 2010, 10: 5025–5031

    Article  ADS  Google Scholar 

  73. Hu Y, Zhang Y, Xu C, et al. Self-powered system with wireless data transmission. Nano Lett, 2011, 11: 2572–2577

    Article  ADS  Google Scholar 

  74. Hwang G T, Park H, Lee J H, et al. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv Mater, 2014, 26: 4880–4887

    Article  Google Scholar 

  75. Ma T, Wang Y, Tang R, et al. Pre-patterned ZnO nanoribbons on soft substrates for stretchable energy harvesting applications. J Appl Phys, 2013, 113: 204503

    Article  ADS  Google Scholar 

  76. Wang Y, Ma T, Yu H, et al. Random analysis on controlled buckling structure for energy harvesting. Appl Phys Lett, 2013, 102: 041915

    Article  ADS  Google Scholar 

  77. Feng X, Yang B D, Liu Y, et al. Stretchable ferroelectric nanoribbons with wavy configurations on elastomeric substrates. ACS Nano, 2011, 5: 3326–3332

    Article  Google Scholar 

  78. Lopez-suarez M, Rurali R, Gammaitoni L, et al. Nanostructured graphene for energy harvesting. Phys Rev B, 2011, 84: 161401

    Article  ADS  Google Scholar 

  79. Lopez-suarez M, Pruneda M, Abadal G, et al. Piezoelectric monolayers as nonlinear energy harvesters. Nanotechnology, 2014, 25: 175401

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Lu, B., Ou, D. et al. Mechanics of flexible and stretchable piezoelectrics for energy harvesting. Sci. China Phys. Mech. Astron. 58, 594601 (2015). https://doi.org/10.1007/s11433-015-5692-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-5692-5

Keywords

Navigation