Skip to main content

Advertisement

Log in

Energy Harvesting from the Cardiovascular System, or How to Get a Little Help from Yourself

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Human energy harvesting is envisioned as a remedy to the weight, the size, and the poor energy density of primary batteries in medical implants. The first implant to have necessarily raised the idea of a biological power supply was the pacemaker in the early 1960s. So far, review articles on human energy harvesting have been rather unspecific and no tribute has been given to the early role of the pacemaker and the cardiovascular system in triggering research in the field. The purpose of the present article is to provide an up-to-date review of research efforts targeting the cardiovascular system as an alternative energy source for active medical implants. To this end, a chronological survey of the last 14 most influential publications is proposed. They include experimental and/or theoretical studies based on electromagnetic, piezoelectric, or electrostatic transducers harnessing various forms of energy, such as heart motion, pressure gradients, and blood flow. Technical feasibility does not imply clinical applicability: although most of the reported devices were shown to harvest an interesting amount of energy from a physiological environment, none of them were tested in vivo for a longer period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Abad, C., C. Santana, J. Diaz, and J. Feijoo. Arteriosclerotic histologic evaluation of the internal mammary artery in patients undergoing coronary artery bypass grafting. Eur. J. Cardiothorac. Surg. 9:198–201, 1995.

    Article  PubMed  CAS  Google Scholar 

  2. Anton, S. R., and H. A. Sodano. A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16:R1–R21, 2007.

    Article  CAS  Google Scholar 

  3. Ariav, A. Method and apparatus for body generation of electrical energy. Patent: US7081683, 2006.

  4. Auphan, M. Heart-actuated, spring driven cardiac stimulator. Patent: US3486506, 1969.

  5. Bauman, L., C. S. Chung, M. Karamanoglu, and S. J. Kovács. The peak atrioventricular pressure gradient to transmitral flow relation: kinematic model prediction with in vivo validation. J. Am. Soc. Echocardiogr. 17:839–844, 2004.

    Article  PubMed  Google Scholar 

  6. Beck, H., W. E. Boden, S. Patibandla, D. Kireyev, V. Gupta, F. Campagna, M. E. Cain, and J. E. Marine. 50th anniversary of the first successful permanent pacemaker implantation in the United States: historical review and future directions. Am. J. Cardiol. 106:810–818, 2010.

    Article  PubMed  Google Scholar 

  7. Beeby, S. P., M. J. Tudor, and N. M. White. Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17:R175–R195, 2006.

    Article  CAS  Google Scholar 

  8. Bullen, R. A., T. C. Arnot, J. B. Lakeman, and F. C. Walsh. Biofuel cells and their development. Biosens. Bioelectron. 21:2015–2045, 2006.

    Article  PubMed  CAS  Google Scholar 

  9. Bussy, C., P. Boutouyrie, P. Lacolley, P. Challande, and S. Laurent. Intrinsic stiffness of the carotid arterial wall material in essential hypertensives. Hypertension 35:1049–1054, 2000.

    Article  PubMed  CAS  Google Scholar 

  10. Cahill, A. E., D. Nash, J. F. Neville, and W. J. van der Grinten. Program for development of an implantable fuel cell. In: Proceedings of the Biochemical Fuel Cell Session, Interagency Advanced Power Group Publications, PIC-BAT 209/5, 1962.

  11. Cernasov, A. N. Apparatus and method for supplying power to subcutaneously implanted devices. Patent: US7813810, 2010.

  12. Chandrakasan, A. P., N. Verma, and D. C. Daly. Ultralow-power electronics for biomedical applications. Annu. Rev. Biomed. Eng. 10:247–274, 2008.

    Article  PubMed  CAS  Google Scholar 

  13. Colton, C. K., and R. F. Drake. Analysis of in vivo deoxygenation of human blood: a feasibility study for an implantable biological fuel cell. Trans. Am. Soc. Artif. Intern. Organs 15:187–199, 1969.

    PubMed  CAS  Google Scholar 

  14. Curtis, A. B., S. J. Worley, P. B. Adamson, E. S. Chung, I. Niazi, L. Sherfesee, T. Shinn, and M. St. John Sutton. Biventricular pacing for atrioventricular block and systolic dysfunction. N. Engl. J. Med. 368:1585–1593, 2013.

    Article  PubMed  CAS  Google Scholar 

  15. Dammers, R., F. Stifft, J. H. M. Tordoir, J. M. M. Hameleers, A. P. G. Hoeks, and P. J. E. H. M. Kitslaar. Shear stress depends on vascular territory: comparison between common carotid and brachial artery. J. Appl. Physiol. 94:485–489, 2003.

    PubMed  Google Scholar 

  16. Deterre, M., B. Boutaud, R. Dalmolin, S. Boisseau, J.-J. Chaillout, E. Lefeuvre, and E. Dufour-Gergam. Energy harvesting system for cardiac implant applications. In: Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), 2011, pp. 387–391.

  17. Deterre, M., E. Lefeuvre, and E. Dufour-Gergam. An active piezoelectric energy extraction method for pressure energy harvesting. Smart Mater. Struct. 21:085004, 2012.

    Article  Google Scholar 

  18. Eli, U. Implantable device with miniature rotating portion for energy harvesting. Patent: US2009/0171448, 2009.

  19. Farco, J. Biomechatronic device. Patent: WO2011/119779.

  20. Gelbart, D., and S. V. Lichtenstein. Self-powered leadless pacemaker. Patent: US2007/0276444.

  21. Gelbart, D., and S. V. Lichtenstein. Self-powered resonant leadless pacemaker. Patent: US2007/0293904.

  22. Goto, H., T. Sugiura, Y. Harada, and T. Kazui. Feasibility of using the automatic generating system for quartz watches as a leadless pacemaker power source. Med. Biol. Eng. Comput. 37:377–380, 1999.

    Article  PubMed  CAS  Google Scholar 

  23. Greatbatch, W. Origins of the implantable cardiac pacemaker. J. Cardiovasc. Nurs. 5:80–85, 1991.

    PubMed  CAS  Google Scholar 

  24. Holzer, A. Micro-generator implant. Patent: US2005/0256549.

  25. Kanai, H., M. Sato, Y. Koiwa, and N. Chubachi. Transcutaneous measurement and spectrum analysis of heart wall vibrations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43:791–810, 1996.

    Article  Google Scholar 

  26. Karami, M. A., D. J. Bradley, and D. J. Inman. Abstract 15551: Vibration powered cardiac rhythm devices. Circulation 126:A15551, 2012.

    Google Scholar 

  27. Karami, M. A., and D. J. Inman. Analytical modeling and experimental verification of the vibrations of the zigzag microstructure for energy harvesting. J. Vib. Acoust. 133:011002, 2010.

    Article  Google Scholar 

  28. Karami, M. A., and D. J. Inman. Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl. Phys. Lett. 100:042901-1–042901-4, 2012.

    Google Scholar 

  29. Kerzenmacher, S., J. Ducrée, R. Zengerle, and F. von Stetten. Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J. Power Sources 182:1–17, 2008.

    Article  CAS  Google Scholar 

  30. Khaligh, A., P. Zeng, and C. Zheng. Kinetic energy harvesting using piezoelectric and electromagnetic technologies—state of the art. IEEE Trans. Ind. Electron. 57:850–860, 2010.

    Article  Google Scholar 

  31. Kim, S., W. W. Clark, and Q.-M. Wang. Piezoelectric energy harvesting with a clamped circular plate: analysis. J. Intell. Mater. Syst. Struct. 16:847–854, 2005.

    Article  Google Scholar 

  32. Kim, S., W. W. Clark, and Q.-M. Wang. Piezoelectric energy harvesting with a clamped circular plate: experimental study. J. Intell. Mater. Syst. Struct. 16:855–863, 2005.

    Article  Google Scholar 

  33. Knaapen, P., T. Germans, J. Knuuti, W. J. Paulus, P. A. Dijkmans, C. P. Allaart, A. A. Lammertsma, and F. C. Visser. Myocardial energetics and efficiency current status of the noninvasive approach. Circulation 115:918–927, 2007.

    Article  PubMed  Google Scholar 

  34. Ko, W. H. Piezoelectric energy converter for electronic implants. Patent: US3456134, 1969.

  35. Konikoff, J. J. In vivo experiments with the bioelectric potentials. Aerosp. Med. 37:824–828, 1966.

    PubMed  CAS  Google Scholar 

  36. Konikoff, J. J. A Survey of in Vivo Energy Sources. Washington: American Institute of Biological Sciences Bioinstrumentation Advisory Council, 1967, 22 pp.

  37. Konikoff, J. J., and L. W. Reynolds. Results of some experiments in biochemical electricity. In: Proceedings of the Biochemical Fuel Cell Session, Interagency Advanced Power Group Publications, PIC-BAT 209/5, 1962.

  38. Lentner, C. Geigy Scientific Table, Vol. 5, Heart and Circulation. Basel: CIBA-GEIGY Ltd, 278 pp., 1990.

  39. Levy, M. N., and A. J. Pappano. Cardiovascular Physiology. Philadelphia: Mosby Elsevier, 288 pp., 2007.

  40. Lewin, G., G. H. Myers, V. Parsonnet, and V. Raman. An improved biological power source for cardiac pacemakers. ASAIO Trans. 14:215–219, 1968.

    CAS  Google Scholar 

  41. Liu, J., G. Cao, Z. Yang, D. Wang, D. Dubois, X. Zhou, G. L. Graff, L. R. Pederson, and J.-G. Zhang. Oriented nanostructures for energy conversion and storage. ChemSusChem 1:676–697, 2008.

    Article  PubMed  CAS  Google Scholar 

  42. Mallela, V. S., V. Ilankumaran, and N. S. Rao. Trends in cardiac pacemaker batteries. Indian Pacing Electrophysiol. J. 4:201–212, 2004.

    PubMed  Google Scholar 

  43. Mitcheson, P. D., E. M. Yeatman, G. K. Rao, A. S. Holmes, and T. C. Green. Energy harvesting from human and machine motion for wireless electronic devices. Proc. IEEE 96:1457–1486, 2008.

    Article  Google Scholar 

  44. Mo, C., L. J. Radziemski, and W. W. Clark. Analysis of piezoelectric circular diaphragm energy harvesters for use in a pressure fluctuating system. Smart Mater. Struct. 19:025016, 2010.

    Article  Google Scholar 

  45. Mo, C., L. J. Radziemski, and W. W. Clark. Experimental validation of energy harvesting performance for pressure-loaded piezoelectric circular diaphragms. Smart Mater. Struct. 19:075010, 2010.

    Article  Google Scholar 

  46. Mutlak, D., D. Aronson, J. Lessick, S. A. Reisner, S. Dabbah, and Y. Agmon. Functional tricuspid regurgitation in patients with pulmonary hypertension: is pulmonary artery pressure the only determinant of regurgitation severity? Chest 135:115–121, 2009.

    Article  PubMed  Google Scholar 

  47. Nagel, M. Vorrichtung zur Erzeugung elektrischer Energie in lebenden Organismen. Patent: DE19535566, 1997.

  48. Nakatani, S. Left ventricular rotation and twist: why should we learn? J. Cardiovasc. Ultrasound 19:1–6, 2011.

    Article  PubMed  Google Scholar 

  49. Nicoud, F. Hemodynamic changes induced by stenting in elastic arteries. Center for Turbulence Research, Annual Research Briefs 335–347, 2002.

  50. Novosel, E. C., C. Kleinhans, and P. J. Kluger. Vascularization is the key challenge in tissue engineering. Adv. Drug Deliv. Rev. 63:300–311, 2011.

    Article  PubMed  CAS  Google Scholar 

  51. Novosel, E. C., W. Meyer, N. Klechowitz, H. Krüger, M. Wegener, H. Walles, G. E. M. Tovar, T. Hirth, and P. J. Kluger. Evaluation of cell–material interactions on newly designed, printable polymers for tissue engineering applications. Adv. Eng. Mater. 13:B467–B475, 2011.

    Article  Google Scholar 

  52. Parsonnet, V., G. H. Myers, R. Zucker, H. Lotman, and M. M. Asa. A cardiac pacemaker using biologic energy sources. ASAIO Trans. 9:174–177, 1963.

    Google Scholar 

  53. Pfenniger, A., D. Obrist, A. Stahel, V. M. Koch, and R. Vogel. Energy harvesting through arterial wall deformation: design considerations for a magneto-hydrodynamic generator. Med. Biol. Eng. Comput. 51:741–755, 2013.

    Article  PubMed  Google Scholar 

  54. Pfenniger, A., L. N. Wickramarathna, R. Vogel, and V. M. Koch. Design and realization of an energy harvester using pulsating arterial pressure. Med. Eng. Phys. 35:1256–1265, 2013.

    Article  PubMed  Google Scholar 

  55. Pham, H.-T., C.-Y. Chiu, and D.-A. Wang. An electromagnetic energy harvester based on pressure fluctuation in Kármán vortex street. In: The 1st International Symposium on Automotive & Convergence Engineering, 2011, pp. 1–4.

  56. Platt, S. R., S. Farritor, and H. Haider. On low-frequency electric power generation with PZT ceramics. IEEE/ASME Trans. Mechatron. 10:240–252, 2005.

    Article  Google Scholar 

  57. Pless, B. D. Device for energy harvesting within a vessel. Patent: US8283793, 2012.

  58. Potkay, J. A. In situ energy harvesting systems for implanted medical devices. Patent: US2010/0298720.

  59. Potkay, J. A., and K. Brooks. An arterial cuff energy scavenger for implanted microsystems. In: The 2nd International Conference on Bioinformatics and Biomedical Engineering, 2008, pp. 1580–1583.

  60. Ramsay, M. J., and W. W. Clark. Piezoelectric energy harvesting for bio MEMS applications. Proc. SPIE 4332:429–438, 2001.

    Article  Google Scholar 

  61. Roberts, S., R. Freeland, G. Stanley, K. D. Dawkins, J. M. Morgan, and P. R. Roberts. Energy harvester for an implant device. Patent: US8135469, 2012.

  62. Roberts, P., G. Stanley, and J. M. Morgan. Abstract 2165: Harvesting the energy of cardiac motion to power a pacemaker. Circulation 118:679–680, 2008.

    Article  Google Scholar 

  63. Romero, E., R. O. Warrington, and M. R. Neuman. Energy scavenging sources for biomedical sensors. Physiol. Meas. 30:R35–R62, 2009.

    Article  PubMed  CAS  Google Scholar 

  64. Shimokawa, T., S. Manabe, T. Fukui, and S. Takanashi. Remodeling of reconstructed left anterior descending coronary arteries with internal thoracic artery grafts. Ann. Thorac. Surg. 88:54–57, 2009.

    Article  PubMed  Google Scholar 

  65. Sohn, J. W., S. B. Choi, and D. Y. Lee. An investigation on piezoelectric energy harvesting for MEMS power sources. Proc. IMechE C 219:429–436, 2005.

    Article  Google Scholar 

  66. Sood, A. K., and S. Ghosh. Carbon nanotube flow sensor device and method. Patent: US6718834, 2004.

  67. Starner, T. Human-powered wearable computing. IBM Syst. J. 35:618–629, 1996.

    Article  Google Scholar 

  68. Starner, T., and J. A. Paradiso. Human-generated power for mobile electronics. In: Low-Power Electronics Design, edited by C. Piguet. Boca Raton: CRC Press, 2004, pp. 45-1–45-35.

    Google Scholar 

  69. Tashiro, R., N. Kabei, K. Katayama, E. Tsuboi, and K. Tsuchiya. Development of an electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion. J. Artif. Organs 5:239–245, 2002.

    Article  Google Scholar 

  70. Tesla, N. Turbine. Patent: US1061206, 1913.

  71. Thüring, C., O. M. Hess, T. Murakami, N. H. Goebel, J. Grimm, and H. P. Krayenbühl. Normalwerte der linksventrikulären Funktion. Biplane Angiokardiographie, unter Berücksichtigung geschlechtsspezifischer Unterschiede. Fortschr. Röntgenstr. 150:562–568, 1989.

    Article  Google Scholar 

  72. Tortora, G. J., and B. H. Derrickson. Principles of Anatomy and Physiology. Hoboken: John Wiley & Sons, 1174 pp., 2009.

  73. Vullers, R. J. M., R. van Schaijk, I. Doms, C. Van Hoof, and R. Mertens. Micropower energy harvesting. Solid-State Electron. 53:684–693, 2009.

    Article  CAS  Google Scholar 

  74. Wang, D.-A., C.-Y. Chiu, and H.-T. Pham. Electromagnetic energy harvesting from vibrations induced by Kármán vortex street. Mechatronics 22:746–756, 2012.

    Article  Google Scholar 

  75. Warriner, R. K., K. W. Johnston, and R. S. C. Cobbold. A viscoelastic model of arterial wall motion in pulsatile flow: implications for Doppler ultrasound clutter assessment. Physiol. Meas. 29:157–179, 2008.

    Article  PubMed  Google Scholar 

  76. Westerhof, N., N. Stergiopulos, and M. I. M. Noble. Snapshots of Hemodynamics—An Aid for Clinical Research and Graduate Education. Boston: Springer, 192 pp., 2005.

  77. Wong, L. S. Y., S. Hossain, A. Ta, J. Edvinsson, D. H. Rivas, and H. Naas. A very low-power CMOS mixed-signal IC for implantable pacemaker applications. IEEE J. Solid-State Circuits 39:2446–2456, 2004.

    Article  Google Scholar 

  78. Zurbuchen, A., A. Pfenniger, A. Stahel, C. T. Stoeck, S. Vandenberghe, V. M. Koch, and R. Vogel. Energy harvesting from the beating heart by a mass imbalance oscillation generator. Ann. Biomed. Eng. 41:131–141, 2013.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Vogel.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfenniger, A., Jonsson, M., Zurbuchen, A. et al. Energy Harvesting from the Cardiovascular System, or How to Get a Little Help from Yourself. Ann Biomed Eng 41, 2248–2263 (2013). https://doi.org/10.1007/s10439-013-0887-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0887-2

Keywords

Navigation