Skip to main content
Log in

Modeling the open circuit output voltage of piezoelectric nanogenerator

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Piezoelectric nanogenerators (NGs) have been developed for converting mechanical energy into electric energy using ZnO, GaN, ZnSnO3, and PZT nanowires. Due to the unique polarity and non-central symmetry of the wurtzite structure, a composite made of using the conical shaped nanowires are used as a simple, cost-effective, and scalable nanogenerator. Based on the finite element methods, the output voltage of the nanogenerator is modeled numerically. The key factors: the spatial location of nanowires, length and dip angle of nanowires, thickness of NG devices, and the physical properties of the polymer inside NGs, which affect the output voltage are studied. The results provide guidance for optimization the output of piezoelectric nanogenerators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Z L, Song J. Piezoelectric nanogen-erators based on zinc oxide nanowire arrays. Science, 2006, 312: 242–246

    Article  Google Scholar 

  2. Wang Z L. Energy harvesting for self-powered nanosystems. Nano Res, 2008, 1(1): 1–8

    Article  Google Scholar 

  3. Wang Z L. Towards self-powered nanosystems: From nanogenerators to nanopiezotronics. Adv Funct Mater, 2008, 18(22): 3553–3567

    Article  Google Scholar 

  4. Wang Z L. Energy harvesting using piezoelectric nanowires-A correspondence on “energy harvesting using nanowires?” by Alexe et al. Adv Mater, 2009, 21(13): 1311–1315

    Article  Google Scholar 

  5. Wang Z L, Wu W. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew Chem Int Ed Engl, 2012, 51(47): 11700–21

    Article  Google Scholar 

  6. Wang Z L. Nanomaterials: Sticky but not messy. Nat Nanotechnol, 2009, 4(7): 407–8

    Article  Google Scholar 

  7. Wang Z L. Progress in piezotronics and piezo-phototronics. Adv Mater, 2012, 24(34): 4632–4646

    Article  Google Scholar 

  8. Wang S, Lin L, Wang Z L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett, 2012, 12(12): 6339–6346

    Article  Google Scholar 

  9. Yang X H, Zhu G, Wang S H, et al. A self-powered electrochromic device driven by a nanogenerator. Energ Environ Sci, 2012, 5(11): 9462

    Article  Google Scholar 

  10. Lee S, Bae S H, Lin L, et al. Super-flexible nanogenerator for energy harvesting from gentle wind and as an active deformation sensor. Adv Funct Mater, 2013, 23(19): 2445–2449

    Article  Google Scholar 

  11. Su Y J, Yang Y, Zhang H L, et al. Enhanced photodegradation of methyl orange with TiO2 nanoparticles using a triboelectric nanogenerator. Nanotechnology, 2013, 24(29): 295401

    Article  Google Scholar 

  12. Zhu G, Pan C, Zhu W, et al. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett, 2012, 12(9): 4960–5

    Article  Google Scholar 

  13. Xu S, Wang Z L. One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Res, 2011, 4(11): 1013–1098

    Article  Google Scholar 

  14. Wang Z L. Toward self-powered sensor networks. Nano Today, 2010, 5(6): 512–514

    Article  Google Scholar 

  15. Wang Z L. Self-powered nanosensors and nanosystems. Adv Mater, 2012, 24(2): 280–5

    Article  Google Scholar 

  16. Hu Y F, Zhang Y, Xu C, et al. High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display. Nano Lett, 2010, 10: 5025–5031

    Article  Google Scholar 

  17. Lin L, et al. Transparent flexible nanogenerator as self-powered sensor for transportation monitoring. Nano Energy, 2013, 2(1): 75–81

    Article  Google Scholar 

  18. Wang Z L. From nanogenerators to piezotronics-A decade-long study of ZnO nanostructures. MRS Bull, 2012, 37(09): 814–827

    Article  Google Scholar 

  19. Patel R, McWilliam S, Popov A A. A geometric parameter study of piezoelectric coverage on a rectangular cantilever energy harvester. Smart Mater Struct, 2011, 20(8): 085004

    Article  Google Scholar 

  20. Shu Y C, Lien I C. Analysis of power output for piezoelectric energy harvesting systems. Smart Mater Struct, 2006, 15(6): 1499–1512

    Article  Google Scholar 

  21. Shu Y C, Lien I C, Wu W J. An improved analysis of the SSHI interface in piezoelectric energy harvesting. Smart Mater Struct, 2007, 16(6): 2253–2264

    Article  Google Scholar 

  22. Sun C, Shi J, Wang X. Fundamental study of mechanical energy harvesting using piezoelectric nanostructures. J Appl Phys, 2010, 108(3): 034309

    Article  Google Scholar 

  23. Zhao S, Erturk A. Electroelastic modeling and experimental validations of piezoelectric energy harvesting from broadband random vibrations of cantilevered bimorphs. Smart Mater Struct, 2013, 22(1): 015002

    Article  Google Scholar 

  24. Ajitsaria J, Choe S Y, Shen D, et al. Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation. Smart Mater Struct, 2007, 16(2): 447–454

    Article  Google Scholar 

  25. Comsol Model Gallery (Electrostatic Potential Between Two Cylinders), http://www.comsol.com/showroom/gallery/118/, accessed June 2013

  26. Zhang Y, Liu Y, Wang Z L. Fundamental theory of piezotronics. Adv Mater, 2011, 23(27): 3004–13

    Article  Google Scholar 

  27. Romano G, Mantini G, Di Carlo A, et al. Piezoelectric potential in vertically aligned nanowires for high output nanogenerators. Nanotechnology, 2011, 22(46): 465401

    Article  Google Scholar 

  28. Lu M Y, Chen L J, Mai W, et al. Tunable electric and magnetic properties of CoxZn1-x S nanowires. Appl Phys Lett, 2008, 93(24): 242503

    Article  Google Scholar 

  29. Park K I, Xu S, Liu Y, et al. Piezoelectric BaTiO(3) thin film nanogenerator on plastic substrates. Nano Lett, 2010, 10(12): 4939–4943

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, X., Li, L. & Zhang, Y. Modeling the open circuit output voltage of piezoelectric nanogenerator. Sci. China Technol. Sci. 56, 2622–2629 (2013). https://doi.org/10.1007/s11431-013-5352-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-013-5352-9

Keywords

Navigation