Skip to main content
Log in

Interaction of radionuclides with natural and manmade materials using XAFS technique

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The X-ray absorption fine structure (XAFS) technology has exhibited a very unique application in the study of sorption mechanism, chemical species and microstructures of radionuclides at the natural solid-water interfaces. In this review, the interaction mechanism of radionuclides with clay minerals and nanomaterials under different environmental conditions are summarized from the XAFS spectroscopy analysis. The coordination number and the bond distances of radionuclides, the oxidation-reduction reactions, the influence of humic substances and microorganisms on the species and structures of radionuclides at molecule level are reviewed and compared. This review is helpful to understand the interactions of radionuclides with oxides, natural clay minerals and nanomaterials, which is also crucial to evaluate the physicochemical behaviors of radionuclides in the natural environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai ZQ, Yuan LY, Zhu L, Liu ZR, Chu SQ, Zheng LR, Zhang J, Chai ZF, Shi WQ. J Mater Chem A, 2015, 3: 525–534

    Article  CAS  Google Scholar 

  2. Yuan LY, Bai ZQ, Zhao R, Liu YL, Li ZJ, Chu SQ, Zheng LR, Zhang J, Zhao YL, Chai ZF, Shi WQ. ACS Appl Mater Interfaces, 2014, 6: 4786–4796

    Article  CAS  Google Scholar 

  3. Yuan LY, Liu YL, Shi WQ, Li Z, Lan JH, Feng YX, Zhao YL, Yuan YL, Chai ZF. J Mater Chem, 2012, 22: 17019–17026

    Article  CAS  Google Scholar 

  4. Shi WQ, Yuan LY, Wang CZ, Wang L, Mei L, Xiao CL, Zhang L, Li ZJ, Zhao YL, Chai ZF. Adv Mater, 2014, 26: 7807–7848

    Article  CAS  Google Scholar 

  5. Yuan LY, Liu YL, Shi WQ, Lv YL, Lan JH, Zhao YL, Chai ZF. Dalton Trans, 2011, 40: 7446–7453

    Article  CAS  Google Scholar 

  6. Wu QY, Lan JH, Wang CZ, Zhao YL, Chai ZF, Shi WQ. J Phys Chem A, 2014, 118: 10273–10280

    Article  CAS  Google Scholar 

  7. Wu QY, Lan JH, Wang CZ, Xiao CL, Zhao YL, Wei YZ, Chai ZF, Shi WQ. J Phys Chem A, 2014, 118: 2149–2158

    Article  CAS  Google Scholar 

  8. Chen Y, Zhang W, Yang S, Hobiny A, Alsaedi A, Wang X. Sci China Chem, 2016, 59: 412–419

    Article  CAS  Google Scholar 

  9. Wang X, Fan Q, Yu S, Chen Z, Ai Y, Sun Y, Hobiny A, Alsaedi A, Wang X. Chem Eng J, 2016, 287: 448–455

    Article  CAS  Google Scholar 

  10. Wang X, Fan Q, Chen Z, Wang Q, Li J, Hobiny A, Alsaedi A, Wang X. Chem Record, 2016, 16: 295–318

    Article  CAS  Google Scholar 

  11. Wang X, Chen Z, Wang X. Sci China Chem, 2015, 58: 1766–1773

    Article  CAS  Google Scholar 

  12. Sun Y, Li J, Wang X. Geochim Cosmochim Acta, 2014, 140: 621–643

    Article  CAS  Google Scholar 

  13. Wang XX, Yu SJ, Chen ZS, Song WC, Chen YT, Hayat T, Alsaedi A, Guo W, Hu J, Wang XK. Sci China Chem, 2016, doi: 10.1007/s11426-016-0163-6

    Google Scholar 

  14. Wang X, Chen Z, Tan X, Hayat T, Ahmad B, Dai S, Wang X. Chem Eng J, 2016, 287: 313–320

    Article  CAS  Google Scholar 

  15. Scheidegger AM, Vespa M, Grolimund D, Wieland E, Harfouche M, Bonhoure I, Dähn R. Waste Manage, 2006, 26: 699–705

    Article  CAS  Google Scholar 

  16. Tan X, Fang M, Wang X. Molecules, 2010, 15: 8431–8468

    Article  CAS  Google Scholar 

  17. Tan X, Ren X, Chen C, Wang X. TrAC Trends Anal Chem, 2014, 61: 107–132

    Article  CAS  Google Scholar 

  18. Nitsche H. J Alloy Compd, 1995, 223: 274–279

    Article  CAS  Google Scholar 

  19. Denecke M. Coord Chem Rev, 2006, 250: 730–754

    Article  CAS  Google Scholar 

  20. Hayes KF, Roe AL, Brown GE, Hodgson KO, Leckie JO, Parks GA. Science, 1987, 238: 783–786

    Article  CAS  Google Scholar 

  21. Chisholm-Brause CJ, O’Day PA, Brown Jr GE, Parks GA. Nature, 1990, 348: 528–531

    Article  CAS  Google Scholar 

  22. Chakraborty S, Bardelli F, Charlet L. Environ Sci Technol, 2010, 44: 1288–1294

    Article  CAS  Google Scholar 

  23. Peretyazhko T, Zachara JM, Heald SM, Jeon BH, Kukkadapu RK, Liu C, Moore D, Resch CT. Geochim Cosmochim Acta, 2008, 72: 1521–1539

    Article  CAS  Google Scholar 

  24. Wilk PA, Shaughnessy DA, Wilson RE, Nitsche H. Environ Sci Technol, 2005, 39: 2608–2615

    Article  CAS  Google Scholar 

  25. Shaughnessy DA, Nitsche H, Booth CH, Shuh DK, Waychunas GA, Wilson RE, Gill H, Cantrell KJ, Serne RJ. Environ Sci Technol, 2003, 37: 3367–3374

    Article  CAS  Google Scholar 

  26. Denecke MA, Pompe S, Reich T, Moll H, Bubner M, Heise KH, Nicolai R, Nitsche H. Radiochim Acta, 1997, 79: 151–159

    Article  CAS  Google Scholar 

  27. Denecke MA, Reichm T, Pompem S, Bubner M, Heise KH, Nitsche H, Allen PG, Bucher JJ, Edelstein NM, Shuh DK, Czerwinski KR. Radiochim Acta, 1998, 82: 103–108

    Article  CAS  Google Scholar 

  28. Arroyabe Loyo RL, Nikitenko SI, Scheinost AC, Simonoff M. Environ Sci Technol, 2008, 42: 2451–2456

    Article  CAS  Google Scholar 

  29. Moyes LN, Jones MJ, Reed WA, Livens FR, Charnock JM, Mosselmans JFW, Hennig C, Vaughan DJ, Pattrick RAD. Environ Sci Technol, 2002, 36: 179–183

    Article  CAS  Google Scholar 

  30. Moyes LN, Parkman RH, Charnock JM, Vaughan DJ, Livens FR, Hughes CR, Braithwaite A. Environ Sci Technol, 2000, 34: 1062–1068

    Article  CAS  Google Scholar 

  31. Livens FR, Jones MJ, Hynes AJ, Charnock JM, Mosselmans JFW, Hennig C, Steele H, Collison D, Vaughan DJ, Pattrick RAD, Reed WA, Moyes LN. J Environ Radioact, 2004, 74: 211–219

    Article  CAS  Google Scholar 

  32. Scheinost AC, Charlet L. Environ Sci Technol, 2008, 42: 1984–1989

    Article  CAS  Google Scholar 

  33. Sheng G, Hu J, Li H, Li J, Huang Y. Chemosphere, 2016, 148: 227–232

    Article  CAS  Google Scholar 

  34. Sheng G, Tang Y, Linghu W, Wang L, Li J, Li H, Wang X, Huang Y. Appl Catal B-Environ, 2016, 192: 268–276

    Article  CAS  Google Scholar 

  35. Sheng G, Yang P, Tang Y, Hu Q, Li H, Ren X, Hu B, Wang X, Huang Y. Appl Catal B-Environ, 2016, 193: 189–197

    Article  CAS  Google Scholar 

  36. Sheng G, Shao X, Li Y, Li J, Dong H, Cheng W, Gao X, Huang Y. J Phys Chem A, 2014, 118: 2952–2958

    Article  CAS  Google Scholar 

  37. Sun Y, Ding C, Cheng W, Wang X. J Hazard Mater, 2014, 280: 399–408

    Article  CAS  Google Scholar 

  38. Li ZJ, Wang L, Yuan LY, Xiao CL, Mei L, Zheng LR, Zhang J, Yang JH, Zhao YL, Zhu ZT, Chai ZF, Shi WQ. J Hazard Mater, 2015, 290: 26–33

    Article  CAS  Google Scholar 

  39. Li J, Chen C, Zhang R, Wang X. Chem Asian J, 2015, 10: 1410–1417

    Article  CAS  Google Scholar 

  40. Li J, Chen C, Zhang R, Wang X. Sci China Chem, 2016, 59: 150–158

    Article  CAS  Google Scholar 

  41. Sheng G, Alsaedi A, Shammakh W, Monaquel S, Sheng J, Wang X, Li H, Huang Y. Carbon, 2016, 99: 123–130

    Article  CAS  Google Scholar 

  42. Liang L, Yang W, Guan X, Li J, Xu Z, Wu J, Huang Y, Zhang X. Water Res, 2013, 47: 5846–5855

    Article  CAS  Google Scholar 

  43. Liang L, Sun W, Guan X, Huang Y, Choi W, Bao H, Li L, Jiang Z. Water Res, 2014, 49: 371–380

    Article  CAS  Google Scholar 

  44. Ding C, Cheng W, Sun Y, Wang X. Geochim Cosmochim Acta, 2015, 165: 86–107

    Article  CAS  Google Scholar 

  45. Zou Y, Wang X, Khan A, Wang P, Liu Y, Alsaedi A, Hayat T, Wang X. Environ Sci Technol, 2016, 50: 7290–7304

    Article  CAS  Google Scholar 

  46. Geckeis H, Rabung T. J Contam Hydrol, 2008, 102: 187–195

    Article  CAS  Google Scholar 

  47. Geckeis H, Lützenkirchen J, Polly R, Rabung T, Schmidt M. Chem Rev, 2013, 113: 1016–1062

    Article  CAS  Google Scholar 

  48. Maher K, Bargar JR, Brown Jr GE. Inorg Chem, 2013, 52: 3510–3532

    Article  CAS  Google Scholar 

  49. Sheng G, Yang S, Sheng J, Hu J, Tan X, Wang X. Environ Sci Technol, 2011, 45: 7718–7726

    Article  CAS  Google Scholar 

  50. Sheng G, Sheng J, Yang S, Hu J, Wang X. J Radioanal Nucl Chem, 2011, 289: 129–135

    Article  CAS  Google Scholar 

  51. Sheng G, Shen R, Dong H, Li Y. Environ Sci Pollut Res, 2013, 20: 3708–3717

    Article  CAS  Google Scholar 

  52. Sheng G, Ye L, Li Y, Dong H, Li H, Gao X, Huang Y. Chem Eng J, 2014, 248: 71–78

    Article  CAS  Google Scholar 

  53. Tan XL, Hu J, Montavon G, Wang XK. Dalton Trans, 2011, 40: 10953–10960

    Article  CAS  Google Scholar 

  54. Yang S, Sheng G, Tan X, Hu J, Du J, Montavon G, Wang X. Geochim Cosmochim Acta, 2011, 75: 6520–6534

    Article  CAS  Google Scholar 

  55. Yang ST, Sheng GD, Guo ZQ, Tan XL, Xu JZ, Wang XK. Sci China Chem, 2012, 55: 632–642

    Article  CAS  Google Scholar 

  56. Yang S, Ren X, Zhao G, Shi W, Montavon G, Grambow B, Wang X. Geochim Cosmochim Acta, 2015, 166: 129–145

    Article  CAS  Google Scholar 

  57. Hu J, Tan X, Ren X, Wang X. Dalton Trans, 2012, 41: 10803–10810

    Article  CAS  Google Scholar 

  58. Ren X, Yang S, Hu F, He B, Xu J, Tan X, Wang X. J Hazard Mater, 2013, 252−253: 2–10

    Article  CAS  Google Scholar 

  59. Scheidegger AM, Lamble GM, Sparks DL. Environ Sci Technol, 1996, 30: 548–554

    Article  CAS  Google Scholar 

  60. Scheidegger AM, Lamble GM, Sparks DL. J Colloid Interface Sci, 1997, 186: 118–128

    Article  CAS  Google Scholar 

  61. Scheidegger AM, Strawn DG, Lamble GM, Sparks DL. Geochim Cosmochim Acta, 1998, 62: 2233–2245

    Article  CAS  Google Scholar 

  62. Scheidegger AM, Wieland E, Scheinost AC, Dähn R, Spieler P. Environ Sci Technol, 2000, 34: 4545–4548

    Article  CAS  Google Scholar 

  63. Scheinost AC, Sparks DL. J Colloid Interface Sci, 2000, 223: 167–178

    Article  CAS  Google Scholar 

  64. Arai Y. Environ Sci Technol, 2008, 42: 1151–1156

    Article  CAS  Google Scholar 

  65. Stumpf T, Hennig C, Bauer A, Denecke MA, Fanghänel T. Radiochim Acta, 2004, 92: 133–138

    Article  CAS  Google Scholar 

  66. Catalano JG, Brown Jr. GE. Geochim Cosmochim Acta, 2005, 69: 2995–3005

    Article  CAS  Google Scholar 

  67. Hartmann E, Baeyens B, Bradbury MH, Geckeis H, Stumpf T. Environ Sci Technol, 2008, 42: 7601–7606

    Article  CAS  Google Scholar 

  68. Hartmann E, Brendebach B, Polly R, Geckeis H, Stumpf T. J Colloid Interface Sci, 2011, 353: 562–568

    Article  CAS  Google Scholar 

  69. Fan QH, Tan XL, Li JX, Wang XK, Wu WS, Montavon G. Environ Sci Technol, 2009, 43: 5776–57820912.0785

    Article  CAS  Google Scholar 

  70. Walter M, Arnold T, Geipel G, Scheinost A, Bernhard G. J Colloid Interface Sci, 2005, 282: 293–305

    Article  CAS  Google Scholar 

  71. Tan X, Fan Q, Wang X, Grambow B. Environ Sci Technol, 2009, 43: 3115–3121

    Article  CAS  Google Scholar 

  72. Sheng GD, Yang ST, Zhao DL, Sheng J, Wang XK. Sci China Chem, 2012, 55: 182–194

    Article  CAS  Google Scholar 

  73. Yang S, Sheng G, Montavon G, Guo Z, Tan X, Grambow B, Wang X. Geochim Cosmochim Acta, 2013, 121: 84–104

    Article  CAS  Google Scholar 

  74. Yang ST, Zong PF, Sheng GD, Ren XM, Huang YY, Wang XK. Radiochim Acta, 2014, 102: 143–153

    Article  CAS  Google Scholar 

  75. Cai Y, Ren X, Lang Y, Liu Z, Zong P, Wang X, Yang S. Environ Sci-Process Impact, 2015, 17: 1904–1914

    Article  CAS  Google Scholar 

  76. Bots P, Shaw S, Law GTW, Marshall TA, Mosselmans JFW, Morris K. Environ Sci Technol, 2016, 50: 3382–3390

    Article  CAS  Google Scholar 

  77. Fuller CC, Bargar JR, Davis JA, Piana MJ. Environ Sci Technol, 2002, 36: 158–165

    Article  CAS  Google Scholar 

  78. Fuller CC, Bargar JR, Davis JA. Environ Sci Technol, 2003, 37: 4642–4649

    Article  CAS  Google Scholar 

  79. Xu L, Zheng T, Yang S, Zhang L, Wang J, Liu W, Chen L, Diwu J, Chai Z, Wang S. Environ Sci Technol, 2016, 50: 3852–3859

    Article  CAS  Google Scholar 

  80. Schlegel ML, Pointeau I, Coreau N, Reiller P. Environ Sci Technol, 2004, 38: 4423–4431

    Article  CAS  Google Scholar 

  81. Stumpf T, Marques Fernandes M, Walther C, Dardenne K, Fanghänel T. J Colloid Interface Sci, 2006, 302: 240–245

    Article  CAS  Google Scholar 

  82. Mandaliev P, Dähn R, Tits J, Wehrli B, Wieland E. J Colloid Interface Sci, 2010, 342: 1–7

    Article  CAS  Google Scholar 

  83. Mandaliev P, Wieland E, Dähn R, Tits J, Churakov SV, Zaharko O. Appl Geochem, 2010, 25: 763–777

    Article  CAS  Google Scholar 

  84. Mandaliev P, Stumpf T, Tits J, Dähn R, Walther C, Wieland E. Geochim Cosmochim Acta, 2011, 75: 2017–2029

    Article  CAS  Google Scholar 

  85. Kelly SD, Newville MG, Cheng L, Kemner KM, Sutton SR, Fenter P, Sturchio NC, Spötl C. Environ Sci Technol, 2003, 37: 1284–1287

    Article  CAS  Google Scholar 

  86. Elzinga EJ, Tait CD, Reeder RJ, Rector KD, Donohoe RJ, Morris DE. Geochim Cosmochim Acta, 2004, 68: 2437–2448

    Article  CAS  Google Scholar 

  87. Reeder RJ, Nugent M, Lamble GM, Tait CD, Morris DE. Environ Sci Technol, 2000, 34: 638–644

    Article  CAS  Google Scholar 

  88. Harfouche M, Wieland E, Dähn R, Fujita T, Tits J, Kunz D, Tsukamoto M. J Colloid Interface Sci, 2006, 303: 195–204

    Article  CAS  Google Scholar 

  89. Heberling F, Denecke MA, Bosbach D. Environ Sci Technol, 2008, 42: 471–476

    Article  CAS  Google Scholar 

  90. Teo BK. EXAFS: Basic Principles and Data Analysis. Heidelberg: Springer-Verlag, 1986

    Book  Google Scholar 

  91. Manceau A, Bonnin D, Kaiser P, Fretigny C. Phys Chem Miner, 1988, 16: 180–185

    Article  CAS  Google Scholar 

  92. Manceau A, Bonnin D, Stone WEE, Sanz J. Phys Chem Miner, 1990, 17: 363–370

    Article  CAS  Google Scholar 

  93. Manceau A, Chateigner D, Gates WP. Phys Chem Miner, 1998, 25: 347–365

    Article  CAS  Google Scholar 

  94. Manceau A, Schlegel ML, Chateigner D, Lanson B, Bartoli C, Gates WP. Application of polarized EXAFS to fine-grained layered minerals. In: Schulze DG, Stucki JW, Bertsch PM. Synchrotron X-ray Methods in Clay Science. Chantilly, VA: The Clay Mineral Society, 1999, 9. 68–114

    CAS  Google Scholar 

  95. Manceau A, Schlegel ML. Phys Chem Miner, 2001, 28: 52–56

    Article  CAS  Google Scholar 

  96. Schlegel ML, Manceau A, Chateigner D, Charlet L. J Colloid Interface Sci, 1999, 215: 140–158

    Article  CAS  Google Scholar 

  97. Dähn R, Scheidegger AM, Manceau A, Curti E, Baeyens B, Bradbury MH, Chateigner D. J Colloid Interface Sci, 2002, 249: 8–21

    Article  CAS  Google Scholar 

  98. Dähn R, Scheidegger AM, Manceau A, Schlegel ML, Baeyens B, Bradbury MH, Morales M. Geochim Cosmochim Acta, 2002, 66: 2335–2347

    Article  Google Scholar 

  99. Dähn R, Scheidegger AM, Manceau A, Schlegel ML, Baeyens B, Bradbury MH, Chateigner D. Geochim Cosmochim Acta, 2003, 67: 1–15

    Article  Google Scholar 

  100. Nachtegaal M, Scheidegger AM, Dähn R, Chateigner D, Furrer G. Geochim Cosmochim Acta, 2005, 69: 4211–4225

    Article  CAS  Google Scholar 

  101. Finck N, Schlegel ML, Bosbach D. Environ Sci Technol, 2009, 43: 8807–8812

    Article  CAS  Google Scholar 

  102. Schlegel ML, Descostes M. Environ Sci Technol, 2009, 43: 8593–8598

    Article  CAS  Google Scholar 

  103. Rakovan J, Newville M, Sutton S. Am Miner, 2001, 86: 697–700

    Article  CAS  Google Scholar 

  104. Goulon J, Rogalev A, Goujon G, Gauthier C, Moguiline E, Solé A, Feite S, Wilhelm F, Jaouen N, Goulon-Ginet C, Dressler P, Rohr P, Lampert MO, Henck R. J Synchrotron Rad, 2005, 12: 57–69

    Article  CAS  Google Scholar 

  105. Welter E, Machek P, Dräger G, Brüggmann U, Fröba M. J Synchrotron Rad, 2005, 12: 448–454

    Article  CAS  Google Scholar 

  106. Takahashi Y, Uruga T, Tanida H, Terada Y, Nakai S, Shimizu H. Anal Chim Acta, 2006, 558: 332–336

    Article  CAS  Google Scholar 

  107. Hazemann JL, Proux O, Nassif V, Palancher H, Lahera E, Da Silva C, Braillard A, Testemale D, Diot MA, Alliot I, Del Net W, Manceau A, Gélébart F, Morand M, Dermigny Q, Shukla A. J Synchrotron Rad, 2009, 16: 283–292

    Article  CAS  Google Scholar 

  108. Gao X, Gu S, Gao Q, Zou Y, Jiang Z, Zhang S, Wei X, Yu H, Sheng G, Duan P, Huang Y. X-Ray Spectrom, 2013, 42: 502–507

    Article  CAS  Google Scholar 

  109. Gao X, Sheng GD, Huang YY. Sci China Chem, 2013, 56: 1658–1666

    Article  CAS  Google Scholar 

  110. Sheng GD, Yang ST. Li YM, Gao X, Huang YY, Wang XK. Radiochim Acta, 2014, 102: 155–167

    CAS  Google Scholar 

  111. Sheng G, Yang Q, Peng F, Li H, Gao X, Huang Y. Chem Eng J, 2014, 245: 10–16

    Article  CAS  Google Scholar 

  112. Marsac R, Davranche M, Morin G, Takahashi Y, Gruau G, Briant N, Dia A. Chem Geol, 2015, 396: 218–227

    Article  CAS  Google Scholar 

  113. Schmeide K, Sachs S, Bubner M, Reich T, Heise KH, Bernhard G. Inorg Chim Acta, 2003, 351: 133–140

    Article  CAS  Google Scholar 

  114. Sachs S, Schmeide K, Reich T, Brendler V, Heise KH, Bernhard G. Radiochim Acta, 2005, 93: 17–25

    CAS  Google Scholar 

  115. Denecke MA, Marquardt CM, Rothe J, Dardenne K, Jensen MP. J Nucl Sci Tech, 2002, 39: 410–413

    Article  Google Scholar 

  116. Schmeide K, Reich T, Sachs S, Bernhard G. Inorg Chim Acta, 2006, 359: 237–242

    Article  CAS  Google Scholar 

  117. Křepelová A, Reich T, Sachs S, Drebert J, Bernhard G. J Colloid Interface Sci, 2008, 319: 40–47

    Article  CAS  Google Scholar 

  118. Ghabbour EA, Scheinost AC, Davies G. Chemosphere, 2007, 67: 285–291

    Article  CAS  Google Scholar 

  119. Hu J, Xie Z, He B, Sheng GD, Chen CL, Li JX, Chen YX, Wang XK. Sci China Chem, 2010, 53: 1420–1428

    Article  CAS  Google Scholar 

  120. Neu MP, Boukhalfa H, Merroun ML. MRS Bull, 2010, 35: 849–857

    Article  CAS  Google Scholar 

  121. Reed DT, Deo RP, Rittmann BE. Subsurface Interactions of Actinide Species with Microorganisms. In: Morss LR, Edelstein NM, Fuger J. The Chemistry of the Actinide and Transactinide Elements. 4th Ed. Dordrecht, The Netherlands: Springer, 2010. 3595–3663

    Chapter  Google Scholar 

  122. Kelly SD, Boyanov MI, Bunker BA, Fein JB, Fowle DA, Yee N, Kemner KM. J Synchrotron Rad, 2001, 8: 946–948

    Article  CAS  Google Scholar 

  123. Kelly SD, Kemner KM, Fein JB, Fowle DA, Boyanov MI, Bunker BA, Yee N. Geochim Cosmochim Acta, 2002, 66: 3855–3871

    Article  CAS  Google Scholar 

  124. Merroun ML, Raff J, Rossberg A, Hennig C, Reich T, Selenska-Pobell S. Appl Environ Microbiol, 2005, 71: 5532–5543

    Article  CAS  Google Scholar 

  125. Panak PJ, Booth CH, Caulder DL, Bucher JJ, Shuh DK, Nitsche H. Radiochim Acta, 2002, 90: 315–321

    CAS  Google Scholar 

  126. Songkasiri W, Reed DT, Rittmann BE. Radiochim Acta, 2002, 90: 785–789

    Article  CAS  Google Scholar 

  127. Günther A, Raff J, Merroun ML, Roßberg A, Kothe E, Bernhard G. Biometals, 2014, 27: 775–785

    Article  CAS  Google Scholar 

  128. Sun Y, Zhang R, Ding C, Wang X, Cheng W, Chen C, Wang X. Geochim Cosmochim Acta, 2016, 180: 51–65

    Article  CAS  Google Scholar 

  129. Merroun M, Hennig C, Rossberg A, Reich T, Selenska-Pobell S. Radiochimica Acta, 2003, 91: 583–592

    Article  CAS  Google Scholar 

  130. Ngwenya BT, Mosselmans JFW, Magennis M, Atkinson KD, Tourney J, Olive V, Ellam RM. Geochim Cosmochim Acta, 2009, 73: 3134–3147

    Article  CAS  Google Scholar 

  131. Takahashi Y, Yamamoto M, Yamamoto Y, Tanaka K. Geochim Cosmochim Acta, 2010, 74: 5443–5462

    Article  CAS  Google Scholar 

  132. Bencheikh-Latmani R, Leckie JO. Geochim Cosmochim Acta, 2003, 67: 4057–4066

    Article  CAS  Google Scholar 

  133. Mauter MS, Elimelech M. Environ Sci Technol, 2008, 42: 5843–5859

    Article  CAS  Google Scholar 

  134. Yu S, Wang X, Tan X, Wang X. Inorg Chem Front, 2015, 2: 593–612

    Article  CAS  Google Scholar 

  135. Sun Y, Chen C, Tan X, Shao D, Li J, Zhao G, Yang S, Wang Q, Wang X. Dalton Trans, 2012, 41: 13388–13394

    Article  CAS  Google Scholar 

  136. Sun Y, Wang Q, Chen C, Tan X, Wang X. Environ Sci Technol, 2012, 46: 6020–6027

    Article  CAS  Google Scholar 

  137. Li Z, Chen F, Yuan L, Liu Y, Zhao Y, Chai Z, Shi W. Chem Eng J, 2012, 210: 539–546

    Article  CAS  Google Scholar 

  138. Bai ZQ, Li ZJ, Wang CZ, Yuan LY, Liu ZR, Zhang J, Zheng LR, Zhao YL, Chai ZF, Shi WQ. RSC Adv, 2014, 4: 3340–3347

    Article  CAS  Google Scholar 

  139. Cheng W, Wang M, Yang Z, Sun Y, Ding C. RSC Adv, 2014, 4: 61919–61926

    Article  CAS  Google Scholar 

  140. Sun Y, Yang S, Chen Y, Ding C, Cheng W, Wang X. Environ Sci Technol, 2015, 49: 4255–4262

    Article  CAS  Google Scholar 

  141. Sun Y, Wu ZY, Wang X, Ding C, Cheng W, Yu SH, Wang X. Environ Sci Technol, 2016, 50: 4459–4467

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported from the National Natural Science Foundation of China (21225730, 91326202, 21577032), the Fundamental Research Funds for the Central Universities (JB2015001), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangke Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Wang, X., Yang, S. et al. Interaction of radionuclides with natural and manmade materials using XAFS technique. Sci. China Chem. 60, 170–187 (2017). https://doi.org/10.1007/s11426-016-0317-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0317-3

Keywords

Navigation