Skip to main content
Log in

Mechanism and microstructure of Eu(III) interaction with γ-MnOOH by a combination of batch and high resolution EXAFS investigation

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this paper, the macroscopic interaction method and high resolution EXAFS technique with a bent crystal analyzer were combined to study Eu(III) interaction mechanism and microstructure with γ-MnOOH as a function of pH. The results indicated that Eu(III) interaction with γ-MnOOH was apparently dependent on pH but independent of ionic strength, suggesting the formation of inner-sphere surface complexation for Eu(III) onto γ-MnOOH. Results of EXAFS analysis indicated that Eu was surrounded by ∼9.0 O atoms in first coordination shell at R Eu-O ≈ 2.40 Å, and second shell of Mn atoms at R Eu-Mn ≈ 3.60 Å was observed for the three adsorption samples. These findings suggested formation of a bidentate surface complex with Eu(III) bonding by edge sharing to MnO6-octahedron on γ-MnOOH surface. Both the macroscopic interaction data and the molecular level evidence of Eu(III) microstructure at the γ-MnOOH-water interface should be factored into better understanding the fate and mobility of Eu(III) and related radionuclides in the natural soil and water environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nriagu JO, Pacyna JM. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 1988, 333: 134–139

    Article  CAS  Google Scholar 

  2. Zhang Y, Li Y, Li J, Hu L, Zheng X. Enhanced removal of nitrate by a novel composite: Nanoscale zero valent iron supported on pillared clay. Chem Eng J, 2011, 171: 526–531

    Article  CAS  Google Scholar 

  3. Zhang Y, Li Y, Zheng X. Removal of atrazine by nanoscale zero valent iron supported on organobentonite. Sci Total Environ, 2011, 409: 625–630

    Article  CAS  Google Scholar 

  4. Li Y, Zhang Y, Li J, Zheng X. Enhanced removal of pentachlorophenol by a novel composite: Nanoscale zero valent immobilized on organobentonite. Environ Pollut, 2011, 159: 3744–3749

    Article  CAS  Google Scholar 

  5. Zhao D, Wang Y, Xuan H, Chen Y, Cao T. Removal of radiocobalt from aqueous solution by Mg2Al layered double hydroxide. J Radioanal Nucl Chem, 2013, 295: 1251–1259

    Article  CAS  Google Scholar 

  6. Zhang YL, Li YM, Li J, Sheng G, Zhang Y, Zheng X. Enhanced Cr(VI) removal by using the mixture of pillared bentonite and zero-valent iron. Chem Eng J, 2012, 185–186: 243–249

    Article  Google Scholar 

  7. Li J, Li Y, Meng Q. Removal of nitrate by zero-valent iron and pillared bentonite. J Hazard Mater, 2010, 174: 188–193

    Article  CAS  Google Scholar 

  8. Li Y, Li J, Zhang YL. Mechanism insights into enhanced Cr(VI) removal using nanoscale zerovalent iron supported on the pillared bentonite by macroscopic and spectroscopic studies. J Hazard Mater, 2012, 227–228: 211–218

    Article  Google Scholar 

  9. Tan XL, Wang XK, Geckeis H, Rabung Th. Sorption of Eu(III) on humic acid or fulvic acid bound to hydrous alumina studied by SEM-EDS, XPS, TRLFS and batch techniques. Environ Sci Technol, 2008, 42: 6532–6537

    Article  CAS  Google Scholar 

  10. Tan XL, Fan QH, Wang XK, Grambow B. Eu(III) sorption to TiO2 (anatase and rutile): Batch, XPS, and EXAFS studies. Environ Sci Technol, 2009, 43: 3115–3121

    Article  CAS  Google Scholar 

  11. Fan QH, Tan XL, Li JX, Wang XK, Wu WS, Montavon G. Sorption of Eu(III) on attapulgite studied by batch, XPS, and EXAFS techniques. Environ Sci Technol, 2009, 43: 5776–5782

    Article  CAS  Google Scholar 

  12. Sheng G, Hu B. Role of solution chemistry on the trapping of radionuclide Th(VI) using titanate nanotubes as an efficient adsorbent. J Radioanal Nucl Chem. doi: 10.1007/s10967-012-2389-3

  13. Sheng G, Dong H, Shen R, Li Y. Microscopic insights into the temperature dependent adsorption of Eu(III) onto titanate nanotubes studied by FTIR, XPS, XAFS and batch technique. Chem Eng J, 2013, 217: 486–494

    Article  CAS  Google Scholar 

  14. Sheng G, Dong H, Li Y. Characterization of diatomite and its application for the retention of radiocobalt: Role of environmental parameters. J Environ Radioact, 2012, 113: 108–115

    Article  CAS  Google Scholar 

  15. Schlegel ML, Pointeau I, Coreau N, Reiller P. Mechanism of europium retention by calcium silicate hydrates: An EXAFS study. Environ Sci Technol, 2004, 38: 4423–4431

    Article  CAS  Google Scholar 

  16. Sheng G, Yang S, Li Y, Gao X, Huang Y, Wang X. Retention mechanisms and microstructure of Eu(III) on manganese dioxide studied by batch and high resolution EXAFS technique (Accepted). Radiochim Acta.

  17. Tan XL, Fang M, Li JX, Lu Y, Wang XK. Adsorption of Eu(III) onto TiO2: Effect of pH, concentration, ionic strength and soil fulvic acid. J Hazard Mater, 2009, 168: 458–465

    Article  CAS  Google Scholar 

  18. Stumpf Th, Hennig C, Bauer A, Denecke MA, Fanghänel Th. An EXAFS and TRLFS study of the sorption of trivalent actinides onto smectite and kaolinite. Radiochim Acta, 2004, 92: 133–138

    Article  CAS  Google Scholar 

  19. Tertre E, Berger G, Simoni E, Castet S, Giffaut E, Loubet M, Catalette H. Europium retention onto clay minerals from 25 to 150 °C: Experimental measurements, spectroscopic features and sorption modeling. Geochim Cosmochim Acta, 2006, 70: 4563–4578

    Article  CAS  Google Scholar 

  20. Bradbury MH, Baeyens B. Sorption of Eu on Na- and Ca-montmorillonites: Experimental investigation and modeling with cation exchange and surface complexation. Geochim Cosmochim Acta, 2002, 66: 2325–2334

    Article  CAS  Google Scholar 

  21. Hu J, Xie Z, He B, Sheng G, Chen C, Li J, Chen Y, Wang X. Sorption of Eu(III) on GMZ bentonite in the absence/presence of humic acid studied by batch and XAFS techniques. Sci China B: Chem, 2010, 53: 1420–1428

    Article  CAS  Google Scholar 

  22. Shao DD, Fan QH, Li JX, Niu ZW, Wu WS, Chen YX, Wang XK. Removal of Eu(III) from aqueous solution using ZSM-5 zeolite. Micro Macro Material, 2009, 123: 1–9

    Article  CAS  Google Scholar 

  23. Kumar S, Kar AS, Bhattacharyya D, Tomar BS. XAFS spectroscopy study of Eu(III) sorption on γ-alumina: Effect of pH. J Radioanal Nucl Chem, 2012, 294: 109–113

    Article  CAS  Google Scholar 

  24. Sheng G, Yang S, Zhao D, Sheng J, Wang X. Adsorption of Eu(III) on titanate nanotubes studied by a combination of batch and EXAFS technique. Sci China Chem, 2012, 55: 182–194

    Article  CAS  Google Scholar 

  25. Rakovan J, Newville M, Sutton S. Evidence of heterovalent Eu in zoned Llallugau apatite using wavelength dispersive XANES. Am Mineral, 2001, 86: 697–700

    CAS  Google Scholar 

  26. Post JE. Manganese oxide minerals: Crystal structures and economic and environmental significance. Proc Natl Acad Sci USA, 1999, 96: 3447–3454

    Article  CAS  Google Scholar 

  27. Zhu MQ, Ginder-Vogel M, Sparks DL. Ni(II) sorption on biogenic Mn-oxides with varying Mn octahedral layer structure. Environ Sci Technol, 2010, 44: 4472–4478

    Article  CAS  Google Scholar 

  28. Brennecka GA, Wasylenki LE, Bargar JR, Weyer S, Anbar AD. Uranium isotope fractionation during adsorption to Mn-oxyhydroxides. Environ Sci Technol, 2011, 45: 1370–1375

    Article  CAS  Google Scholar 

  29. Lafferty BJ, Ginder-Vogel M, Sparks DL. Arsenite oxidation by a poorly crystalline Manganese-oxide 1: Stirred-flow experiments. Environ Sci Technol, 2010, 44: 8460–8466

    Article  CAS  Google Scholar 

  30. Pan G, Qin YW, Li XL, Hu TD, Wu ZY, Xie YN. EXAFS studies on adsorption-desorption reversibility at manganese oxides-water interfaces I. Irreversible adsorption of zinc onto manganite (γ-MnOOH). J Colloid Interf Sci, 2004, 271: 28–34

    Article  CAS  Google Scholar 

  31. Li XL, Pan G, Qin YW, Hu TD, Wu ZY, Xie YN. EXAFS studies on adsorption-desorption reversibility at manganese oxide-water interfaces II. Reversible adsorption of zinc on δ-MnO2. J Colloid Interf Sci, 2004, 271: 35–40

    Article  CAS  Google Scholar 

  32. Bochatay L, Persson P, Sjoberg S. Metal ion coordination at the water-manganite (γ-MnOOH) interface I. An EXAFS study of cadmium( II). J Colloid Interf Sci, 2000, 229: 584–592

    Article  CAS  Google Scholar 

  33. Bochatay L, Persson P. Metal ion coordination at the water-manganite (γ-MnOOH) Interface II. An EXAFS study of zinc(II). J Colloid Interf Sci, 2000, 229: 593–599

    Article  CAS  Google Scholar 

  34. Hazemann J, Proux O, Nassif V, Palancher H, Lahera E, Silva C, Braillard A, Testemale D, Diot M, Alliot I, Net W, Manceau A, Gelebart F, Morand M, Dermigny Q, Shukla A. High-resolution spectroscopy on an X-ray absorption beamline. J Synchrotron Rad, 2009, 16: 283–292

    Article  CAS  Google Scholar 

  35. Takahashi Y, Uruga T, Tanida H, Terada Y, Nakai S, Shimizu H. Application of X-ray absorption near-edge structure (XANES) using bent crystal analyzer to speciation of trace Os in iron meteorites. Analytica Chimica Acta, 2006, 558: 332–336

    Article  CAS  Google Scholar 

  36. Goulon J, Rogalev A, Goujon G, Gauthier Ch, Moguiline E, Solé A, Feite S, Wilhelm F, Jaouen N, Goulon-Ginet Ch, Dressler P, Rohr P, Lampert MO, Henck R. Advanced detection systems for X-ray fluorescence excitation spectroscopy. J Synchrotron Radiat, 2005, 12: 57–69

    Article  CAS  Google Scholar 

  37. Machek P, Welter E, Drger G, Brüggmann U, Fröba M. A new X-ray spectrometer with large focusing crystal analyzer. J Synchrotron Radiat, 2005, 12: 448–454

    Article  Google Scholar 

  38. Ramstedt M, Norgren C, Shchukarev A, Sjöberg S, Persson P. Co-adsorption of cadmium(II) and glyphosate at the water-manganite (γ-MnOOH) interface. J Colloid Interf Sci, 2005, 285: 493–501

    Article  CAS  Google Scholar 

  39. Lou X, Wu X, Zhang Y. A study about γ-MnOOH nanowires as anode materials for rechargeable Li-ion batteries. J Alloys Compd, 2013, 550: 185–189

    Article  CAS  Google Scholar 

  40. Li Z, Bao H, Miao X, Chen X. A facile route to growth of γ-MnOOH nanorods and electrochemical capacitance properties. J Colloid Interf Sci, 2011, 357: 286–291

    Article  CAS  Google Scholar 

  41. Ankudinov AL, Rehr JJ. Relativistic calculations of spin-dependent X-ray absorption spectra. Phys Rev B, 1997, 56: 1712–1715

    Article  Google Scholar 

  42. Allen PG, Bucher JJ, Shuh DK, Edelstein NM, Craig I. Coordination chemistry of trivalent lanthanide and actinide ions in dilute and concentrated chloride solutions. Inorg Chem, 2000, 39: 595–601

    Article  CAS  Google Scholar 

  43. Hu B, Cheng W, Zhang H, Sheng G. Sorption of radionickel to goethite: Effect of water quality parameters and temperature. J Radioanal Nucl Chem, 2010, 285: 389–398

    Article  CAS  Google Scholar 

  44. Sheng G, Yang S, Sheng J, Zhao D, Wang X. Influence of solution chemistry on the removal of Ni(II) from aqueous solution to titanate nanotubes. Chem Eng J, 2011, 168: 178–182

    Article  CAS  Google Scholar 

  45. Hu B, Cheng W, Zhang H, Yang S. Solution chemistry effects on sorption behavior of radionuclide 63Ni(II) in illite-water suspensions. J Nucl Mater, 2010, 406: 263–270

    Article  CAS  Google Scholar 

  46. Hayes KF, Leckie JO. Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interfaces. J Colloid Interface Sci, 1987, 115: 564–572

    Article  CAS  Google Scholar 

  47. Sheng G, Li Y, Yang X, Ren X, Yang S, Hu J, Wang X. Efficient removal of arsenate by a versatile magnetic graphene oxide composites. RSC Adv, 2012, 2: 12400–12407

    Article  CAS  Google Scholar 

  48. Sheng G, Hu J, Jin H, Yang S, Ren X, Li J, Chen Y, Wang X. Effect of humic acid, fulvic acid, pH, ionic strength and temperature on 63Ni(II) sorption to MnO2. Radiochimica Acta, 2010, 98: 291–299

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuYing Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, X., Sheng, G. & Huang, Y. Mechanism and microstructure of Eu(III) interaction with γ-MnOOH by a combination of batch and high resolution EXAFS investigation. Sci. China Chem. 56, 1658–1666 (2013). https://doi.org/10.1007/s11426-013-4888-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4888-7

Keywords

Navigation