Skip to main content

Function of Colloidal and Nanoparticles in the Sorption of Radionuclides

  • Chapter
  • First Online:
Behavior of Radionuclides in the Environment I

Abstract

As a result of the human activities, radionuclides are released to the environment, and its speciation depends on the source and release scenario and also on the geochemical conditions. The colloidal and nanoparticles may significantly affect radionuclide migration. The recent trends in the description of radionuclide (in particular with redox capability) interaction with environmental colloids such as iron oxides, manganese oxides, titanium oxides, clay minerals, natural organic maters, and microbiology are discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bach D, Christiansen BC, Schild D, Geckeis H (2014) Tem study of green rust sodium sulphate (GRNa,SO4) interacted with Neptunyl Ions (NpO2+). Radiochim Acta 102:279–289. https://doi.org/10.1515/ract-2013-2105

    Article  CAS  Google Scholar 

  • Banik NL, Marsac R, Lützenkirchen J, Diascorn A, Bender K, Marquardt CM, Geckeis H (2016) Sorption and redox speciation of plutonium at the illite surface. Environ Sci Technol 50:2092–2098. https://doi.org/10.1021/acs.est.5b05129

    Article  CAS  Google Scholar 

  • Batuk ON, Conradson SD, Aleksandrova ON, Boukhalfa H, Burakov BE, Clark DL, Czerwinski KR, Felmy AR, Lezama-Pacheco JS, Kalmykov SN, Moore DA, Myasoedov BF, Reed DT, Reilly DD, Roback RC, Vlasova IE, Webb SM, Wilkerson MP (2015) Multiscale speciation of U and Pu at Chernobyl, Hanford, Los Alamos, McGuire AFB, Mayak, and Rocky Flats. Environ Sci Technol 49:6474–6484

    Article  CAS  Google Scholar 

  • Begg JD, Zavarin M, Zhao P, Tumey SJ, Powell B, Kersting AB (2013) Pu(V) and Pu(IV) sorption to montmorillonite. Environ Sci Technol 47:5146–5153

    Article  CAS  Google Scholar 

  • Begg JD, Edelman C, Zavarin M, Kersting AB (2018) Sorption kinetics of plutonium (V)/(VI) to three montmorillonite clays. Appl Geochem 96:131–137. https://doi.org/10.1016/J.APGEOCHEM.2018.06.001

    Article  CAS  Google Scholar 

  • Bergaya F, Lagaly G (2006) General introduction: clays, clay minerals, and clay science. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of CLAY Science. Elsevier Science. https://doi.org/10.1016/S1572-4352(05)01001-9

    Google Scholar 

  • Bondarenko O, Demchuk V, Tepkin V, Nagorsky V (1996) Hot particle factor in radiation dose formation after the Chernobyl accident. In: Proceedings of the first international conference The Radiol. consequences Chernobyl Accid

    Google Scholar 

  • Brendler V, Vahle A, Arnold T, Bernhard G, Fanghänel T (2003) RES3T-Rossendorf expert system for surface and sorption thermodynamics. J Contam Hydrol. https://doi.org/10.1016/S0169-7722(02)00129-8

    Article  CAS  Google Scholar 

  • Bryan ND, Abrahamsen L, Evans N, Warwick P, Buckau G, Weng L, Van Riemsdijk WH (2012) The effects of humic substances on the transport of radionuclides: recent improvements in the prediction of behaviour and the understanding of mechanisms. Appl Geochem 27:378–389

    Article  CAS  Google Scholar 

  • Buda RA, Banik NL, Kratz JV, Trautmann N (2008) Studies of the ternary systems humic substances – kaolinite – Pu(III) and Pu(IV). Radiochim Acta 96:657–665

    Article  CAS  Google Scholar 

  • Clark DL, Hecker SS, Jarvinen GD, Neu MP (2005) Plutonium. Chem Actin Trans Elem 813–1264. https://doi.org/10.1007/1-4020-3598-5_7

  • Conroy NA, Zavarin M, Kersting AB, Powell BA (2017) Effect of natural organic matter on plutonium sorption to goethite. Environ Sci Technol 51:699–708. https://doi.org/10.1021/acs.est.6b03587

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. WILEY-VCH GmbH & Co. KgaA, Weinheim, p 664

    Book  Google Scholar 

  • d’Orlye F, Reiller PE (2012) Contribution of capillary electrophoresis to an integrated vision of humic substances size and charge characterizations. J Colloid Interface Sci 368:231–240

    Article  CAS  Google Scholar 

  • Dubasov YV, Smirnova EA, Malimonova SI (2012) Leaching of radionuclides from products of underground nuclear explosions in granite: experiments with radioactive samples of melted rock from explosion cavities on semipalatinsk test site. Radiochemistry 54:298–307. https://doi.org/10.1134/S1066362212030149

    Article  CAS  Google Scholar 

  • Duff MC, Hunter DB, Triay IR, Bertsch PM, Reed DT, Sutton SR, Shea-McCarthy G, Kitten J, Eng P, Chipera SJ, Vaniman DT (1999) Mineral associations and average oxidation states of sorbed Pu on tuff. Environ Sci Technol 33:2163–2169

    Article  CAS  Google Scholar 

  • Emerson HP, Powell BA (2015) Observations of surface-mediated reduction of Pu(VI) to Pu(IV) on hematite nanoparticles by ATR FT-IR. Radiochim Acta 103:553–563. https://doi.org/10.1515/ract-2014-2372

    Article  CAS  Google Scholar 

  • Emerson HP, Kaplan DI, Powell BA (2019) Plutonium binding affinity to sediments increases with contact time. Chem Geol 505:100–107. https://doi.org/10.1016/j.chemgeo.2018.11.009

    Article  CAS  Google Scholar 

  • Facts and Problems Related to Radioactive Waste Disposal in the Seas Adjacent to the Territory of the Russian Federation (1993) Materials for a report by the governmental commission on matters related to radioactive waste disposal at sea. In: Established by decree

    Google Scholar 

  • Francis AJ, Dobbs S, Nine BJ (1980) Microbial activity of trench leachates from shallow-land, low-level radioactive waste disposal sites. Appl Environ Microbiol 40:108–113

    Article  CAS  Google Scholar 

  • Fredrickson JK, Zachara JM, Balkwill DL, Kennedy D, Li S m, Kostandarithes HM, Daly MJ, Romine MF, Brockman FJ (2004) Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the Hanford Site, Washington State. Appl Environ Microbiol 70:4230–4241

    Article  CAS  Google Scholar 

  • Fröhlich DR (2015) Sorption of neptunium on clays and clay minerals – a review. Clay Clay Miner 63:262–276. https://doi.org/10.1346/CCMN.2015.0630402

    Article  CAS  Google Scholar 

  • Geckeis H, Rabung T, Schafer T (2011) Actinide-nanoparticle interaction: generation, stability and mobility. In: Kalmykov SN, Denecke MA (eds) Actinide nanoparticle research. Springer, Berlin/Heidelberg, pp 1–30

    Google Scholar 

  • Geckeis H, Lützenkirchen J, Polly R, Rabung T, Schmidt M (2013) Mineral–water Interface reactions of actinides. Chem Rev 113:1016–1062. https://doi.org/10.1021/cr300370h

    Article  CAS  Google Scholar 

  • Gilkes RI, Mckenzie RM (1988) Geochemistry and mineralogy of manganese in soil. 1:23–35

    Google Scholar 

  • Herbelin A, Westall J (1999) FITEQL. A computer program for determination constant from experimental data

    Google Scholar 

  • Hixon AE, Powell BA (2014) Observed changes in the mechanism and rates of Pu(V) reduction on hematite as a function of total plutonium concentration. Environ Sci Technol 48:9255–9262

    Article  CAS  Google Scholar 

  • Hixon AE, Arai Y, Powell BA (2013) Examination of the effect of alpha radiolysis on plutonium(V) sorption to quartz using multiple plutonium isotopes. J Colloid Interface Sci 403:105–112

    Article  CAS  Google Scholar 

  • Hu YJ, Scwaiger LK, Booth CH, Kukkadapu RK, Cristiano E, Kaplan DI, Nitsche H (2010) Molecular interactions of plutonium(VI) with synthetic manganese-substituted goethite. Radiochim Acta 98:655–663

    Article  CAS  Google Scholar 

  • IUPAC (1997) Compendium of chemical terminology, 2nd edn. (the “Gold Book”). Blackwell Scientific Publications, Oxford. https://doi.org/10.1351/goldbook.S05769

  • Jiménez Nápoles H, León Vintró L, Mitchell PI, Omarova A, Burkitbayev M, Priest ND, Artemyev O, Lukashenko S (2004) Source-term characterisation and solid speciation of plutonium at the Semipalatinsk NTS. Kazakhstan Appl Radiat Isot 61:325–331. https://doi.org/10.1016/j.apradiso.2004.03.028

    Article  CAS  Google Scholar 

  • Kalmykov SN, Vlasova IE, Romanchuk AY, Zakharova EV, Volkova AG, Presnyakov IA (2015) Partitioning and speciation of Pu in the sedimentary rocks aquifer from the deep liquid nuclear waste disposal. Radiochim Acta 103. https://doi.org/10.1515/ract-2014-2344

  • Kaplan U, Amayri S, Drebert J, Rossberg A, Grolimund D, Reich T (2017) Geochemical interactions of plutonium with opalinus clay studied by spatially resolved synchrotron radiation techniques. Environ Sci Technol 51:7892–7902. https://doi.org/10.1021/acs.est.6b06528

    Article  CAS  Google Scholar 

  • Keeney-Kennicutt WL, Morse JW (1985) The redox chemistry of Pu(V)O2+ interaction with common mineral surfaces in dilute solutions and seawater. Geochim Cosmochim Acta 49:2577–2588

    Article  CAS  Google Scholar 

  • Kersting AB, Zavarin M (2011) Colloid-facilitated transport of plutonium at the Nevada Test Site, NV, USA. In: Kalmykov SN, Denecke MA (eds) Actinide nanoparticle research. Springer, Berlin, p 160

    Google Scholar 

  • Kersting AB, Efurd DW, Finnegan DL, Rokop DL, Smith DK, Thompson JL (1999) Migration of plutonium in groundwater at the Nevada Test Site. Nature 397:56–59

    Article  CAS  Google Scholar 

  • Kirsch R, Fellhauer D, Altmaier M, Neck V, Rossberg A, Fanghanel T, Charlet L, Scheinost AC (2011) Oxidation state and local structure of plutonium reacted with magnetite, mackinawite, and chukanovite. Environ Sci Technol 45:7267–7274

    Article  CAS  Google Scholar 

  • Kleinhempel D (1970) Ein Beitrag zur Theorie des Huminstoffzustandes. Arch Agron Soil Sci 14:3–14. https://doi.org/10.1080/03650347009412655

    Article  CAS  Google Scholar 

  • Kuznetsov YV, Legin VK, Strukov VN, Novikov AV, Goryachenkova TA, Shishlov AE, Savitskii YV (2000) No title. Radiochemistry 42:59

    Google Scholar 

  • Legin EK, Trifonov YI, Khokhlov ML, Legina EE, Suglobov DN, Strukov VN, Legin VK, Kuznetsov YV (2003) Model study of the effect of gleyzation on radionuclide migration in waterlogged soils. Radiochemistry 45:96–101. https://doi.org/10.1023/A:1022390023158

    Article  CAS  Google Scholar 

  • Leon Vintro L, Mitchell PI, Omarova A, Burkitbayev M, Jimenez Napoles H, Priest ND (2009) Americium, plutonium and uranium contamination and speciation in well waters, streams and atomic lakes in the Sarzhal region of the Semipalatinsk Nuclear Test Site, Kazakhstan. J Environ Radioact 100:308–314

    Article  CAS  Google Scholar 

  • Levchuk S, Kashparov V, Maloshtan I, Yoschenko V, Van Meir N (2012) Migration of transuranic elements in groundwater from the near-surface radioactive waste site. Appl Geochem 27:1339–1347

    Article  CAS  Google Scholar 

  • Lin P, Xu C, Zhang S, Fujitake N, Kaplan DI, Yeager CM, Sugiyama Y, Schwehr KA, Santschi PH (2017) Plutonium partitioning behavior to humic acids from widely varying soils is related to carboxyl-containing organic compounds. Environ Sci Technol 51:11742–11751. https://doi.org/10.1021/acs.est.7b03409

    Article  CAS  Google Scholar 

  • Lind OC, Salbu B, Janssens K, Proost K, Dahlgaard H (2005) Characterization of uranium and plutonium containing particles originating from the nuclear weapons accident in Thule, Greenland, 1968. J Environ Radioact 81:21–32

    Article  CAS  Google Scholar 

  • Luksiene B, Druteikiene R, Peciulyte D, Baltrunas D, Remeikis V, Paskevicius A (2012) Effect of microorganisms on the plutonium oxidation states. Appl Radiat Isot 70:442–449

    Article  CAS  Google Scholar 

  • Marquardt CM, Seibert A, Artinger R, Denecke MA, Kuczewski B, Schild D, Fanghanel T (2004) The redox behaviour of plutonium in humic rich groundwater. Radiochim Acta 92:617–623

    CAS  Google Scholar 

  • Marsac R, Banik NL, Lützenkirchen J, Buda RA, Kratz JV, Marquardt CM (2015) Modeling plutonium sorption to kaolinite: accounting for redox equilibria and the stability of surface species. Chem Geol 400:1–10. https://doi.org/10.1016/j.chemgeo.2015.02.006

    Article  CAS  Google Scholar 

  • McCubbin D, Leonard KS, Greenwood RC, Taylor BR (2004) Solid-solution partitioning of plutonium in surface waters at the Atomic Weapons Establishment Aldermaston (UK). Sci Total Environ 332:203–216

    Article  CAS  Google Scholar 

  • McMahon CA, Leon Vintro L, Mitchell PI, Dahlgaard H (2000) Oxidation-state distribution of plutonium in surface and subsurface waters at Thule, Northwest Greenland. Appl Radiat Isot 52:697–703

    Article  CAS  Google Scholar 

  • Minh T, Behzad L, Hadi F (2012) Viscous behaviour of soft clay and inducing factors 1069–1083. https://doi.org/10.1007/s10706-012-9535-0

    Book  Google Scholar 

  • Mitchell PI, Batlle JVI, Downes AB, Condren OM, Vintro LL, Sanchezcabeza JA (1995) No title. Appl Radiat Isot 46:1175

    Article  CAS  Google Scholar 

  • Mitchell PI, Downes AB, Leon Vintro L, McMahon CA (2001) Studies of the speciation, colloidal association and remobilisation of plutonium in the marine environment. In: Kudo A (ed) Radioactivity in the environment plutonium in the environment proceedings of the second international symposium. Elsevier, pp 175–200

    Google Scholar 

  • Morgenstem A, Choppin GR (2002) Kinetics of the oxidation of Pu(IV) by manganese dioxide. Radiochim Acta. https://doi.org/10.3758/PBR.15.4.679

    Article  Google Scholar 

  • Myasoedov BF, Kalmykov SN (2015) Nuclear power industry and the environment. Mendeleev Commun 25:319–328

    Article  CAS  Google Scholar 

  • Nelson DM, Lovett MB (1978) Oxidation state of plutonium on the Irish Sea. Nature 276:599–601

    Article  CAS  Google Scholar 

  • Neu MP, Icopini GA, Boukhalfa H (2005) Plutonium speciation affected by environmental bacteria. Radiochim Acta 93:705–714

    Article  CAS  Google Scholar 

  • Neu MR, Boukhalfa H, Merroun ML (2010) Biomineralization and biotransformations of actinide materials. MRS Bull 35:849–857

    Article  CAS  Google Scholar 

  • Novikov AP, Kalmykov SN, Utsunomiya S, Ewing RC, Horreard F, Merkulov A, Clark SB, Tkachev VV, Myasoedov BF (2006) Colloid transport of plutonium in the Far-Field of the Mayak Production Association, Russia. Science 314:638–641

    Article  CAS  Google Scholar 

  • Novikov AP, Kalmykov SN, Myasoedov BF, Ivanov IA, Rovnyi SI (2009) Relationship of radionuclides with colloidal substance of underground waters taken from observation wells in the zone of Karachaevsky halo of pollution. Vopr. Radiats. Bezop (in Russian)

    Google Scholar 

  • Ohnuki T, Yoshida T, Ozaki T, Kozai N, Sakamoto F, Nankawa T, Suzuki Y, Francis AJ (2007) Chemical speciation and association of plutonium with bacteria, kaolinite clay, and their mixture. Environ Sci Technol 41:3134–3139

    Article  CAS  Google Scholar 

  • Panak PJ, Nitsche H (2001) Interaction of aerobic soil bacteria with plutonium(VI). Radiochim Acta 89:499–504

    Article  CAS  Google Scholar 

  • Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. In: U.S. Geological Survey techniques and methods. p. book 6-A43

    Google Scholar 

  • Payne TE, Brendler V, Ochs M, Baeyens B, Brown PL, Davis JA, Ekberg C, Kulik DA, Lutzenkirchen J, Missana T, Tachi Y, Van Loon LR, Altmann S (2013) Guidelines for thermodynamic sorption modelling in the context of radioactive waste disposal. Environ Model Softw 42:143–156

    Article  Google Scholar 

  • Povinec PP, Osvath I, Baxter MS, Ballestra S, Carroll J, Gastaud J, Harms I, Huynh-Ngoc L, Kwong LLW, Pettersson H (1997) Summary of IAEA-MEL’s investigation of Kara Sea radioactivity and radiological assessment. Mar Pollut Bull 35:235–241

    Article  CAS  Google Scholar 

  • Powell BA, Fjeld RA, Kaplan DI, Coates JT, Serkiz SM (2004) Pu(V)O2+ adsorption and reduction by synthetic magnetite (Fe3O4). Environ Sci Technol 38:6016–6024

    Article  CAS  Google Scholar 

  • Powell BA, Fjeld RA, Kaplan DI, Coates JT, Serkiz SM (2005) Pu(V)O2+adsorption and reduction by synthetic hematite and goethite. Environ Sci Technol. https://doi.org/10.1021/es0487168

    Article  CAS  Google Scholar 

  • Powell BA, Duff MC, Kaplan DI, Fjeld RA, Newville M, Hunter DB, Bertsch PM, Coates JT, Eng P, Rivers ML, Serkiz SM, Sutton SR, Triay IR, Vaniman DT (2006) Plutonium oxidation and subsequent reduction by Mn(IV) minerals in Yucca Mountain tuff. Environ Sci Technol 40:3508–3514

    Article  CAS  Google Scholar 

  • Reiller PE, Buckau G (2012) 5 – Impacts of humic substances on the geochemical behaviour of radionuclides. In: Poinssot C, Geckeis H (eds) Radionuclide behaviour in the natural environment. Woodhead Publishing Series in Energy. Woodhead Publishing, pp 103–160. https://doi.org/10.1533/9780857097194.1.103

    Chapter  Google Scholar 

  • Romanchuk AY, Kalmykov SN, Aliev RA (2011) Plutonium sorption onto hematite colloids at femto- and nanomolar concentrations. Radiochim Acta 99. https://doi.org/10.1524/ract.2011.1808

    Article  CAS  Google Scholar 

  • Romanchuk AY, Kalmykov SN, Egorov AV, Zubavichus YV, Shiryaev AA, Batuk ON, Conradson SD, Pankratov DA, Presnyakov IA (2013) Formation of crystalline PuO2+x·nH2O nanoparticles upon sorption of Pu(V,VI) onto hematite. Geochim Cosmochim Acta 121:29. https://doi.org/10.1016/j.gca.2013.07.016

    Article  CAS  Google Scholar 

  • Romanchuk AY, Kalmykov SN, Egorov AV, Zubavichus YV, Shiryaev AA, Smirnov EA, Garshev AV (2016) Photoreduction of Pu(V,VI) by TiO2. Radiochim Acta 104. https://doi.org/10.1515/ract-2015-2494

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309. https://doi.org/10.1029/95RG01302

    Article  Google Scholar 

  • Runde W, Neu MP (2011) Actinides in the geosphere. In: Morss LR, Edelstein NM, Fuger J (eds) The chemistry of the actinides and transactinide elements. Springer, Dordrecht, pp 3475–3593

    Google Scholar 

  • Rusin PA, Quintana L, Brainard JR, Strietelmeier BA, Tait CD, Ekberg SA, Palmer PD, Newton TW, Clark DL (1994) Solubilization of plutonium hydrous oxide by iron-reducing Bacteria. Environ Sci Technol 28:1686–1690

    Article  CAS  Google Scholar 

  • Sahai N, Sverjensky DA (1998) GEOSURF: a computer program for modeling adsorption on mineral surfaces from aqueous solution. Comput Geosci 24:853–873

    Article  CAS  Google Scholar 

  • Salbu B (2000) Source-related characteristics of radioactive particles: a review. Radiat Prot Dosim 92:49–54

    Article  CAS  Google Scholar 

  • Salbu B, Nikitin AI, Strand P, Christensen GC, Chumichev B, Lind B, Fjelldal H, Bergan TDS, Rudjord AL, Sickel M, Valetova NK, Foyn L (1997) Radioactive contamination from dumped nuclear waste in the Kara Sea – results from the joint Russian-Norwegian expeditions in 1992–1994. Sci Total Environ 202:185–198

    Article  CAS  Google Scholar 

  • Salbu B, Kashparov V, Lind OC, Garcia-Tenorio R, Johansen MP, Child DP, Roos P, Sancho C (2018) Challenges associated with the behaviour of radioactive particles in the environment. J Environ Radioact 186:101–115. https://doi.org/10.1016/J.JENVRAD.2017.09.001

    Article  CAS  Google Scholar 

  • Sanada Y, Matsunaga T, Yanase N, Nagao S, Amano H, Takada H, Tkachenko Y (2002) Accumulation and potential dissolution of Chernobyl-derived radionuclides in river bottom sediment. Appl Radiat Isot 56:751–760

    Article  CAS  Google Scholar 

  • Sanchez AL, Murray JW, Sibley TH (1985) The adsorption of plutonium IV and V on goethite. Geochim Cosmochim Acta 49:2297–2307

    Article  CAS  Google Scholar 

  • Santschi PH, Xu C, Zhang S, Schwehr KA, Grandbois R, Kaplan DI, Yeager CM (2017) Iodine and plutonium association with natural organic matter: a review of recent advances. Appl Geochem 85:121–127. https://doi.org/10.1016/j.apgeochem.2016.11.009

    Article  CAS  Google Scholar 

  • Sarbas B, Töpper W (1993) Natural occurrence. Minerals. In: Ditz R, Töpper W (eds) Mn manganese: natural occurrence. Minerals (native metal, solid solution, silicide, and carbide. Sulfides and related compounds. Halogenides and oxyhalogenides. Oxides of type MO). Springer, Berlin/Heidelberg, pp 1–8. https://doi.org/10.1007/978-3-662-08907-1_1

    Chapter  Google Scholar 

  • Schecher WD, McAvoy DC (1992) MINEQL+: a software environment for chemical equilibrium modeling. Comput Environ Urban Syst 16:65–76. https://doi.org/10.1016/0198-9715(92)90053-T

    Article  Google Scholar 

  • Scheinost AC, Steudtner R, Hübner R, Weiss S, Bok F (2016) NeptuniumV retention by siderite under anoxic conditions: precipitation of NpO2-like nanoparticles and of NpIV pentacarbonate. Environ Sci Technol 50:10413–10420. https://doi.org/10.1021/acs.est.6b02399

    Article  CAS  Google Scholar 

  • Schmidt M, Lee SS, Wilson RE, Knope KE, Bellucci F, Eng PJ, Stubbs JE, Soderholm L, Fenter P (2013) Surface-mediated formation of Pu(IV) nanoparticles at the muscovite-electrolyte interface. Environ Sci Technol 47:14178–14184

    Article  CAS  Google Scholar 

  • Schwertmann U, Kodama H, Fischer WR (1986) Mutual interactions between organics and iron oxides. Interact Soil Miner Nat Org Microb:223–250. https://doi.org/10.2136/sssaspecpub17.c7

    Google Scholar 

  • Semenkova A, Romanchuk AY, Krupskaya VV, Pokidko BV, Dorzhieva OV, Sobolev AV, Presnyakov IA, Verma PK, Mohapatra PK, Kalmykov SN (2018) Np(V) uptake by various clays. Appl Geochem 92:1–8. https://doi.org/10.1016/j.apgeochem.2018.02.006

    Article  CAS  Google Scholar 

  • Shaughnessy DA, Nitsche H, Booth CH, Shuh DK, Waychunas GA, Wilson RE, Gill H, Cantrell KJ, Serne RJ (2003) Molecular interfacial reactions between Pu(VI) and manganese oxide minerals manganite and hausmannite. Environ Sci Technol 37:3367–3374

    Article  CAS  Google Scholar 

  • Shcherbina NS, Perminova IV, Kalmykov SN, Kovalenko AN, Haire RG, Novikov AP (2007) Redox and complexation interactions of neptunium(V) with quinonoid-enriched humic derivatives. Environ Sci Technol 41:7010–7015. https://doi.org/10.1021/es070415l

    Article  CAS  Google Scholar 

  • Skipperud L, Brown J, Fifield LK, Oughton DH, Salbu B (2009) Association of plutonium with sediments from the Ob and Yenisey Rivers and Estuaries. J Environ Radioact 100:290–300

    Article  CAS  Google Scholar 

  • Stepanets O, Borisov A, Ligaev A, Solovjeva G, Travkina A (2007) Radioecological investigations in shallow bays of the Novaya Zemlya Archipelago in 2002–2005. J Environ Radioact 96:130–137

    Article  CAS  Google Scholar 

  • Stukalov PM, Aleksakhin AI, Ivanov IA, Simkina NA (2007) Determination of parameters of radionuclide desorption from man-made sludge of reservoir B-9 (Karachay). Vopr. Radiats. Bezop (in Russian)

    Google Scholar 

  • Tan XL, Wang XK, Geckeis H, Rabung TH (2008) Sorption of Eu(III) on humic acid or fulvic acid bound to hydrous alumina studied by SEM-EDS, XPS, TRLFS, and batch techniques. Environ Sci Technol 42:6532–6537

    Article  CAS  Google Scholar 

  • Tanaka K, Suzuki ÃY, Ohnuki T (2009) Sorption and oxidation of tetravalent plutonium on Mn oxide in the presence of citric acid. Chem Lett 38:2–3. https://doi.org/10.1246/cl.2009.1032

    Article  CAS  Google Scholar 

  • Velde B, Meunier A (2008) The origin of clay minerals in soils and weathered rocks. Springer, Berlin/Heidelberg, p 281

    Book  Google Scholar 

  • Verma PK, Semenkova AS, Krupskaya VV, Zakusin SV, Mohapatra PK, Romanchuk AY, Kalmykov SN (2019) Eu(III) sorption onto various montmorillonites: experiments and modeling. Appl Clay Sci 175:22–29. https://doi.org/10.1016/J.CLAY.2019.03.001

    Article  CAS  Google Scholar 

  • Vlasova IE, Kalmykov SN, Batuk ON, Kuz’menkova NV, Aleksandrova OA, Ivanov IA, Tananaev IG (2013) Speciation of alpha-emitting radionuclides in samples of bottom sediments of reservoir 17 (B-17, Old Swamp) PA “Mayak.” Vopr. Radiats. Bezop (in Russian) 2, 48–56

    Google Scholar 

  • Wildung RE, Garland TR (1982) Effects of plutonium on soil microorganisms. Appl Environ Microbiol 43:418–423

    Article  CAS  Google Scholar 

  • Woodruff LG, Bedinger GM, Piatak NM (2017) Titanium chapter T of critical mineral resources of the United States – economic and environmental geology and prospects for future supply professional paper 1802 – T U.S. Department of the Interior. U.S. Geological Survey, Reston, Virginia. https://doi.org/10.3133/pp1802T

  • Yablokov AV (2001) Radioactive waste disposal in seas adjacent to the territory of the Russian Federation. Mar Pollut Bull 43:8–18

    Article  CAS  Google Scholar 

  • Yanase N, Isobe H, Sato T, Sanada Y, Matsunaga T, Amano H (2002) Characterization of hot particles in surface soil around the Chernobyl NPP. J Radioanal Nucl Chem 252:233–239

    Article  CAS  Google Scholar 

  • Yang Y, Saiers JE, Xu N, Minasian SG, Tyliszczak T, Kozimor SA, Shuh DK, Barnett MO (2012) Impact of natural organic matter on uranium transport through saturated geologic materials: from molecular to column scale. Environ Sci Technol 46:5931–5938

    Article  CAS  Google Scholar 

  • Zavarin M, Roberts SK, Hakem N, Sawvel AM, Kersting AB (2005) Eu(III), Sm(III), Np(V), Pu(V), and Pu(IV) sorption to calcite. Radiochim Acta 93:93–102

    Article  CAS  Google Scholar 

  • Zavarin M, Powell BA, Bourbin M, Zhao P, Kersting AB (2012) Np(V) and Pu(V) ion exchange and surface-mediated reduction mechanisms on montmorillonite. Environ Sci Technol 46:2692–2698

    Article  CAS  Google Scholar 

  • Zhao P, Zavarin M, Leif RN, Powell BA, Singleton MJ, Lindvall RE, Kersting AB (2011) Mobilization of actinides by dissolved organic compounds at the Nevada Test Site. Appl Geochem 26:308–318

    Article  CAS  Google Scholar 

  • Zhao P, Begg JD, Zavarin M, Tumey SJ, Williams R, Dai ZR, Kips R, Kersting AB (2016) Plutonium(IV) and (V) sorption to goethite at sub-femtomolar to micromolar concentrations: redox transformations and surface precipitation. Environ Sci Technol 50:6948–6956. https://doi.org/10.1021/acs.est.6b00605

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Russian Scientific Foundation (project 16-13-00049).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Romanchuk, A.Y., Kalmykov, S.N. (2020). Function of Colloidal and Nanoparticles in the Sorption of Radionuclides. In: Kato, K., Konoplev, A., Kalmykov, S. (eds) Behavior of Radionuclides in the Environment I. Springer, Singapore. https://doi.org/10.1007/978-981-15-0679-6_6

Download citation

Publish with us

Policies and ethics