Skip to main content
Log in

Adsorption of Eu(III) on titanate nanotubes studied by a combination of batch and EXAFS technique

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The effects of pH, contact time and natural organic ligands on radionuclide Eu(III) adsorption and mechanism on titanate nanotubes (TNTs) are studied by a combination of batch and extended X-ray absorption fine structure (EXAFS) techniques. Macroscopic measurements show that the adsorption is ionic strength dependent at pH < 6.0, but ionic strength independent at pH > 6.0. The presence of humic acid (HA) / fulvic acid (FA) increases Eu(III) adsorption on TNTs at low pH, but reduces Eu(III) adsorption at high pH. The results of EXAFS analysis indicate that Eu(III) adsorption on TNTs is dominated by outer-sphere surface complexation at pH < 6.0, whereas by inner-sphere surface complexation at pH > 6.0. At pH < 6.0, Eu(III) consists of ∼ 9 O atoms at R Eu-O ≈ 2.40 Å in the first coordination sphere, and a decrease in NEu-O with increasing pH indicates the introduction of more asymmetry in the first sphere of adsorbed Eu(III). At long contact time or high pH values, the Eu(III) consists of ∼2 Eu at R Eu-Eu ≈ 3.60 Å and ∼ 1 Ti at R Eu-Ti ≈ 4.40 Å, indicating the formation of inner-sphere surface complexation, surface precipitation or surface polymers. Surface adsorbed HA/FA on TNTs modifies the species of adsorbed Eu(III) as well as the local atomic structures of adsorbed Eu(III) on HA/FA-TNT hybrids. Adsorbed Eu(III) on HA/FA-TNT hybrids forms both ligand-bridging ternary surface complexes (Eu-HA/FA-TNTs) as well as surface complexes in which Eu(III) remains directly bound to TNT surface hydroxyl groups (i.e., binary Eu-TNTs or Eu-bridging ternary surface complexes (HA/FA-Eu-TNTs)). The findings in this work are important to describe Eu(III) interaction with nanomaterials at molecular level and will help to improve the understanding of Eu(III) physicochemical behavior in the natural environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Formation of titanium oxide nanotube. Langmuir, 1998, 14: 3160–3163

    Article  CAS  Google Scholar 

  2. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Titania nanotubes prepared by chemical processing. Adv Mater, 1999, 11: 1307–1311

    Article  CAS  Google Scholar 

  3. Ou HH, Lo SL. Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application. Sep Purif Technol, 2007, 58: 179–191

    Article  CAS  Google Scholar 

  4. Lee CK, Lin KS, Wu CF, Lyu MD, Lo CC. Effects of synthesis temperature on the microstructures and basic dyes adsorption of titanate nanotubes. J Hazard Mater, 2008, 150: 494–503

    Article  CAS  Google Scholar 

  5. Lee CK, Wang CC, Juang LC, Lyu MD, Hung SH, Liu SS. Effects of sodium content on the microstructures and basic dye cation exchange of titanate nanotubes. Colloids Surf A, 2008, 317: 164–173

    Article  CAS  Google Scholar 

  6. Xiong L, Yang Y, Mai JX, Sun WL, Zhang CY, Wei DP, Chen Q, Ni JR. Adsorption behavior of methylene blue onto titanate nanotubes. Chem Eng J, 2010, 156: 313–320

    Article  CAS  Google Scholar 

  7. Chen YC, Lo SL, Kuo J. Pb(II) adsorption capacity and behavior of titanate nanotubes made by microwave hydrothermal method. Colloids Surf A, 2010, 361: 126–131

    Article  CAS  Google Scholar 

  8. An HQ, Zhu BL, Wu HY, Zhang M, Wang SR, Zhang SM, Wu SH, Huang WP. Synthesis and characterization of titanate and CS2-modified titanate nanotubes as well as their adsorption capacities for heavy metal ions. Chem J Chinese U, 2008, 29: 439–444

    CAS  Google Scholar 

  9. Liu SS, Lee CK, Chen HC, Wang CC, Juang LC. Application of titanate nanotubes for Cu(II) ions adsorptive removal from aqueous solution. Chem Eng J, 2009, 147: 188–193

    Article  CAS  Google Scholar 

  10. Tan XL, Wang XK, Geckeis H, Rabung Th. Sorption of Eu(III) on humic acid or fulvic acid bound to hydrous alumina studied by SEM-EDS, XPS, TRLFS and batch techniques. Environ Sci Technol, 2008, 42: 6532–6537

    Article  CAS  Google Scholar 

  11. Fan QH, Tan XL, Li JX, Wang XK, Wu WS, Montavon G. Sorption of Eu(III) on attapulgite studied by batch, XPS, and EXAFS techniques. Environ Sci Technol, 2009, 43: 5776–5782

    Article  CAS  Google Scholar 

  12. Tan XL, Fan QH, Wang XK, Grambow B. Eu(III) sorption to TiO2 (anatase and rutile): Batch, XPS, and EXAFS studies. Environ Sci Technol, 2009, 43: 3115–3121

    Article  CAS  Google Scholar 

  13. Schlegel ML, Pointeau I, Coreau N, Reiller P. Mechanism of europium retention by calcium silicate hydrates: an EXAFS study. Environ Sci Technol, 2004, 38: 4423–4431

    Article  CAS  Google Scholar 

  14. Montavon G, Markai S, Andrés Y, Grambow B. Complexation studies of Eu(III) with alumina-bound polymaleic acid: Effect of organic polymer loading and metal ion concentration. Environ Sci Technol, 2002, 36: 3303–3309

    Article  CAS  Google Scholar 

  15. Stumpf Th, Hennig C, Bauer A, Denecke MA, Fanghänel Th. An EXAFS and TRLFS study of the sorption of trivalent actinides onto smectite and kaolinite. Radiochim Acta, 2004, 92: 133–138

    Article  CAS  Google Scholar 

  16. Tao ZY, Zhang J, Zhai J. Characterization and differentiation of humic acids and fulvic acids in soils from various regions of China by nuclear magnetic resonance spectroscopy. Anal Chim Acta, 1999, 395: 199–203

    Article  CAS  Google Scholar 

  17. Zhang J, Zhai J, Zhao FZ, Tao ZY. Study of soil humic substances by cross-polarization magic angle spinning 13C nuclear magnetic resonance and pyrolysis-capillary gas chromatography. Anal Chim Acta, 1999, 378: 177–182

    Article  CAS  Google Scholar 

  18. Chin YP, Alken G, O'Loughlin E. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ Sci Technol, 1994, 28: 1853–1858

    Article  CAS  Google Scholar 

  19. Suetake J, Nosaka AY, Hodouchi K, Matsubara H, Nosaka Y. Characteristics of titanate nanotube and the states of the confined sodium ions. J Phys Chem C, 2008, 112: 18474–18482

    CAS  Google Scholar 

  20. Niu HY, Wang JM, Shi YL, Cai YQ, Wei FS. Adsorption behavior of arsenic onto protonated titanate nanotubes prepared via hydrothermal method. Micro Macro Mater, 2009, 122: 28–35

    CAS  Google Scholar 

  21. Rodrigues CM, Ferreira OP, Alves OL. Interaction of sodium titanate nanotubes with organic acids and base: Chemical, structural and morphological stabilities. J Braz Chem Soc, 2010, 21: 1–8

    Article  Google Scholar 

  22. Lee B, Lu D, Kondo JN, Domen K. Three-dimensionally ordered mesoporous niobium oxide. J Am Chem Soc, 2002, 124: 11256–11257

    Article  CAS  Google Scholar 

  23. Lee S, Anderson PR, Bunker GB, Karanfil C. EXAFS study of Zn sorption mechanisms on montmorillonite. Environ Sci Technol, 2004, 38: 5426–5432

    Article  CAS  Google Scholar 

  24. Nachtegaal M, Sparks DL. Nickel sequestration in a kaolinite-humic acid complex. Environ Sci Technol, 2003, 37: 529–534

    Article  CAS  Google Scholar 

  25. Strathmann TJ, Myneni SB. Effect of soil fulvic acid on Nickel(II) sorption and bonding at the aqueous-boehmite (Γ-AlOOH) interface. Environ Sci Technol, 2005, 39: 4027–4034

    Article  CAS  Google Scholar 

  26. Rabung Th, Geckeis H, Kim J, Beck HP. The influence of anionic ligands on the sorption behavior of Eu(III) on natural hematite. Radiochim Acta, 1998, 82: 243–248

    CAS  Google Scholar 

  27. Chen CL, Wang XK, Nagatsu M. Europium adsorption on multiwall carbon nanotube/iron oxide magnetic composite in the presence of polyacrylic acid. Environ Sci Technol, 2009, 43: 2362–2367

    Article  CAS  Google Scholar 

  28. Hayes KF, Leckie JO. Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interfaces. J Colloid Interf Sci, 1987, 115: 564–572

    Article  CAS  Google Scholar 

  29. Shao DD, Fan QH, Li JX, Niu ZW, Wu WS, Chen YX, Wang XK. Removal of Eu(III) from aqueous solution using ZSM-5 zeolite. Micro Macro Mater, 2009, 123: 1–9

    CAS  Google Scholar 

  30. Esmadi F, Simm, J. Adsorption of cobalt(II) by amorphous ferric hydroxide. Colloids Surf A, 1995, 104, 265–270

    Article  CAS  Google Scholar 

  31. Shao D, Xu D, Wang S, Fan Q, Wu W, Dong Y, Wang X. Modeling of radionickel sorption on MX-80 bentonite as a function of pH and ionic strength. Sci China Ser B-Chem, 2009, 52: 362–371

    Article  CAS  Google Scholar 

  32. Takamatsu R, Asakura K, Chun W, Miyazaki T, Nakano M. EXAFS studies about the sorption of cadmium ions on montmorillonite. Chem Lett, 2006, 35, 224–225

    Article  CAS  Google Scholar 

  33. Strawn DG, Sparks DL. The use of XAFS to distinguish between inner- and outer-sphere lead adsorption complexes on montmorillonite. J Colloid Interf Sci, 1999, 216: 257–269

    Article  CAS  Google Scholar 

  34. Bouby M, Lützenkirchen J, Dardenne K, Preocanin T, Denecke MA, Klenze R, Geckeis H. Sorption of Eu(III) onto titanium dioxide: Measurements and modeling. J Colloid Interf Sci, 2010, 350: 551–561

    Article  CAS  Google Scholar 

  35. Fairhurst AJ, Warwick P, Richardson S. The influence of humic acid on the sorption of europium onto inorganic colloids as a function of pH. Colloid Surf A, 1995, 99: 187–199

    Article  CAS  Google Scholar 

  36. Geckeis H, Rabung Th, Ngo MT, Kim JI, Beck HP. Humic colloidborne natural polyvalent metal ions: dissociation experiment. Environ Sci Technol, 2002, 36: 2946–2952

    Article  CAS  Google Scholar 

  37. Yang K, Xing BS. Adsorption of fulvic acid by carbon nanotubes from water. Environ Pollut, 2009, 157: 1095–1100

    Article  CAS  Google Scholar 

  38. Hu J, Xie Z, He B, Sheng G, Chen C, Li J, Chen Y, Wang X. Sorption of Eu(III) on GMZ bentonite in the absence/presence of humic acid studied by batch and XAFS techniques. Sci China Chem, 2010, 53: 1420–1428

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiangKe Wang.

Additional information

Contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, G., Yang, S., Zhao, D. et al. Adsorption of Eu(III) on titanate nanotubes studied by a combination of batch and EXAFS technique. Sci. China Chem. 55, 182–194 (2012). https://doi.org/10.1007/s11426-011-4370-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4370-3

Keywords

Navigation