Skip to main content
Log in

Understanding the adsorption mechanism of Ni(II) on graphene oxides by batch experiments and density functional theory studies

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The graphene oxides (GOs) have attracted multidisciplinary study because of their special physicochemical properties. The high surface area and large amounts of oxygen-containing functional groups make GOs suitable materials for the efficient elimination of heavy metal ions from aqueous solutions. Herein the sorption of Ni(II) on GOs was studied using batch experiments, and the results showed that the sorption of Ni(II) is strongly dependent on pH and ionic strength at pH<8, and independent of ionic strength at pH>8. The sorption of Ni(II) is mainly dominated by outer-sphere surface complexation and ion exchange at low pH, and by inner-sphere surface complexation at high pH. The interaction of Ni(II) with GOs was also investigated by theoretical density functional theory (DFT) calculations, and the results show that the sorption of Ni(II) on GOs is mainly attributed to the–COH and–COC groups and the DFT calculations show that Ni(II) forms stable GO_Ni_triplet structure with the binding energy of -39.44 kcal/mol, which is in good agreement with the batch sorption experimental results. The results are important for the application of GOs as adsorbents in the efficient removal of Ni(II) from wastewater in environmental pollution cleanup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao YG, Wang XX, Li JX, Wang XK. Polym Chem, 2015, 6: 5376–5384

    Article  CAS  Google Scholar 

  2. Ding CC, Cheng WC, Sun YB, Wang XK. Geochim Cosmochim Acta, 2015, 165: 86–107

    Article  CAS  Google Scholar 

  3. Chen CL, Wang XK. Ind Eng Chem Res, 2006, 45: 9144–9149

    Article  CAS  Google Scholar 

  4. Reddad Z, Gerente C, Andres Y. Le Cloirec P. Environ Sci Technol, 2002, 36: 2067–2073

    Article  CAS  Google Scholar 

  5. Bradbury MH, Baeyens B. Geochim Cosmochim Acta, 1999, 63: 325–336

    Article  CAS  Google Scholar 

  6. Yang ST, Sheng GD, Tan XL, Hu J, Du JZ, Montavon G, Wang XK. Geochim Cosmochim Acta, 2011, 75: 6520–6534

    Article  CAS  Google Scholar 

  7. Yang ST, Ren XM, Zhao GX, Shi WQ, Montavon G, Grambow B, Wang XK. Geochim Cosmochim Acta, 2015, 166: 129–145

    Article  CAS  Google Scholar 

  8. Dähn R, Scheidegger AM, Manceau A, Schlegel ML, Baeyens B, Bradbury MH, Chateigner D. Geochim Cosmochim Acta, 2003, 67: 1–15

    Article  Google Scholar 

  9. Sheng GD, Yang ST, Sheng J, Hu J, Tan XL, Wang XK. Environ Sci Technol, 2011, 45: 7718–7726

    Article  CAS  Google Scholar 

  10. Wang Q, Wang XK, Chai ZF, Hu WP. Chem Soc Rev, 2013, 42: 8821–8834

    Article  CAS  Google Scholar 

  11. Yu SJ, Wang XX, Tan XL, Wang XK. Inorg Chem Front, 2015, 2: 593–612

    Article  CAS  Google Scholar 

  12. Zhao GX, Ren XM, Gao X, Tan XL, Li JX, Chen CL, Huang YY, Wang XK. Dalton Trans, 2011, 40: 10945–10952

    Article  CAS  Google Scholar 

  13. Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS. Adv Mater, 2010, 22: 3906–3924

    Article  CAS  Google Scholar 

  14. Zhao GX, Li JX, Ren XM, Chen CL, Wang XK. Environ Sci Technol, 2011, 45:10454–10462

    Article  CAS  Google Scholar 

  15. Yang SB, Chen CL, Chen Y, Li JX, Wang DQ, Wang XK, Hu WP. ChemPlusChem, 2015, 80: 480–484

    Article  CAS  Google Scholar 

  16. Sun YB, Wang Q, Chen CL, Tan XL, Wang XK. Environ Sci Technol, 2012, 46: 6020–6027

    Article  CAS  Google Scholar 

  17. Wang XX, Chen ZS, Wang XK. Sci China Chem, 2015, 58: 1766–1773

    Article  CAS  Google Scholar 

  18. Yang ST, Chang YL, Wang HF, Liu GB, Chen S, Wang YW, Liu YF, Cao AN. J Colloid Interf Sci, 2010, 351: 122–127

    Article  CAS  Google Scholar 

  19. Boukhvalov DW, Katsnelson MI. J Am Chem Soc, 2008, 130: 10697–10701

    Article  CAS  Google Scholar 

  20. Jung I, Dikin DA, Piner RD, Ruoff RS. Nano Lett, 2008, 8: 4283–4287

    Article  CAS  Google Scholar 

  21. Yang SB, Wang XX, Dai SY, Wang XK, Alshomrani AS, Hayat T, Ahmad B. J Radioanal Nucl Chem, 2015, doi: 101007/s10967-015-4425-6

    Google Scholar 

  22. Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1997, 78: 1396

    Article  CAS  Google Scholar 

  23. Balabanov NB, Peterson KA. J Chem Phys, 2005, 123: 064107

  24. Cossi M, Barone V, Robb MA. J Chem Phys, 1999, 111: 5295–5302

    Article  CAS  Google Scholar 

  25. Cossi M, Rega N, Scalmani G, Barone V. J Comput Chem, 2003, 24: 669–681

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani GE, Barone V, Mennucci B, Petersson GA. Gaussian 09, Revision A 02. Wallingford, CT: Gaussian Inc., 2009

    Google Scholar 

  27. Yang SB, Wu XL, Chen CL, Dong HL, Hu WP, Wang XK. Chem Commun, 2012, 48: 2773–2775

    Article  CAS  Google Scholar 

  28. Eda G, Chhowalla M. Adv Mater, 2010, 22: 2392–2415

    Article  CAS  Google Scholar 

  29. Zhao GX, Jiang L, He YD, Li JX, Dong HL, Wang XK, Hu WP. Adv Mater, 2011, 23: 3959–3963

    Article  CAS  Google Scholar 

  30. Shao DD, Li JX, Wang XK. Sci China Chem, 2014, 57: 1449–1458

    Article  CAS  Google Scholar 

  31. Song WC, Shao DD, Lu SS, Wang XK. Sci China Chem, 2014, 57: 1291–1299

    Article  CAS  Google Scholar 

  32. Yang ST, Li JX, Shao DD, Hu J, Wang XK. J Hazard Mater, 2009, 166: 109–116

    Article  CAS  Google Scholar 

  33. Mercer KL, Tobiason JE. Environ Sci Technol, 2008, 42: 3797–3802

    Article  CAS  Google Scholar 

  34. Reddad Z, Gerente C, Andres Y, Cloirec LP. Environ Sci Technol, 2002, 36: 2067–2073

    Article  CAS  Google Scholar 

  35. Hayes KF, Leckie JO. J Colloid Interf Sci, 1987, 115: 564–572

    Article  CAS  Google Scholar 

  36. Tan P, Sun J, Hu YY, Fang Z, Bi Q, Chen YC, Cheng JH. J Hazard Mater, 2015, 297: 251–260

    Article  CAS  Google Scholar 

  37. Tan X, Fang M, Chen C, Yu S, Wang X. Carbon, 2008, 46: 1741–1750

    Article  CAS  Google Scholar 

  38. Debnath S, Ghosh UC. Chem Eng J, 2009, 152: 480–491

    Article  CAS  Google Scholar 

  39. Yang S, Li J, Shao D, Hu J, Wang X. J Hazard Mater, 2009, 166: 109–116

    Article  CAS  Google Scholar 

  40. Casabianca LB, Shaibat MA, Cai WW, Park S, Piner R, Ruoff RS, Ishii Y. J Am Chem Soc, 2010, 132: 5672–5676

    Article  CAS  Google Scholar 

  41. Lan JH, Cao DP, Wang WC, Smit B. ACS Nano, 2010, 4: 4225–4237

    Article  CAS  Google Scholar 

  42. Berland K, Arter CA, Cooper VR, Lee K, Lundqvist BI. Schröder E, Thonhauser T, Hyldgaard P. J Chem Phys, 2014, 140: 18A539

    Article  Google Scholar 

  43. Mastalerz R, Widmark PO, Roos B, Lindh R, Reiher M. J Chem Phys, 2010, 133: 144111

    Article  Google Scholar 

  44. Lane JR. Contreras-García J, Piquemal JP, Miller BJ, Kjaergaard HG. J Chem Theory Comput, 2013, 9: 3263–3266

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shubin Yang or Xiangke Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhang, W., Yang, S. et al. Understanding the adsorption mechanism of Ni(II) on graphene oxides by batch experiments and density functional theory studies. Sci. China Chem. 59, 412–419 (2016). https://doi.org/10.1007/s11426-015-5549-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5549-9

Keywords

Navigation