Skip to main content

Advertisement

Log in

Phytostabilization Potential of Pb Mine Tailings by Two Grass Species, Thysanolaena maxima and Vetiveria zizanioides

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Pot and field experiments were conducted to elucidate the phytostabilization potential of two grass species (Thysanolaena maxima and Vetiveria zizanioides) with respect to lead (Pb) tailing soil. Three fertilizers (Osmocote® fertilizer, cow manure, and organic fertilizer) were used to improve the physicochemical properties of tailing soil. V. zizanioides treated with organic fertilizer and cow manure showed the highest biomass (14.0 ± 2.6 and 10.5 ± 2.6 g per plant, respectively) and the highest Pb uptake in the organic fertilizer treatment (T. maxima, 413.3 μg per plant; V. zizanioides, 519.5 μg per plant) in the pot study, whereas in field trials, T. maxima attained the best performances of dry biomass production (217.0 ± 57.9 g per plant) and Pb uptake (32.1 mg per plant) in the Osmocote® treatment. In addition, both grasses showed low translocation factor (<1) values and bioconcentration coefficients for root (>1). During a 1-year field trial, T. maxima also produced the longest shoot (103.9 ± 29.7 cm), followed by V. zizanioides (70.6 ± 16.8 cm), in Osmocote® treatment. Both grass species showed potential as excluder plants suitable for phytostabilization applications in Pb-contaminated areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmed, O. H., Hussin, A., Ahmad, H. M. H., Janoh, M. B., Rahim, A. A., & Majid, N. M. A. (2009). Enhancing the urea-N use efficiency in maize cultivation on acid soils using urea amended with zeolite and TSP. American Journal of Applied Sciences, 6(5), 829–833.

    Article  CAS  Google Scholar 

  • Allen, S. E., Grimshaw, H. M., Parkinson, H. M., & Quarmby, J. A. (1974). Chemical analysis of ecological materials. Oxford: Blackwell.

    Google Scholar 

  • Alvarenga, P., Gonçalves, A. P., Fernandes, R. M., de Varennes, A., Vallini, G., Duarte, E., & Cunha-Queda, A. C. (2008). Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. Science of the Total Environment, 406, 43–56.

    Google Scholar 

  • APHA, AWWA, & WEF (American Public Health Association, American Water Works Association and Water Environment Federation). (2005). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association.

    Google Scholar 

  • Arienzo, M., Adamo, P., & Cozzolino, V. (2004). The potential of Lolium perenne for revegetation of contaminated soils from a metallurgical site. The Science of the Total Environment, 319, 13–15.

    Article  CAS  Google Scholar 

  • Berti, W. R., Cunningham, S. C., & Cooper, E. M. (1998). Case studies in the field—in place inactivation and phytorestoration of Pb-contaminated sites. In J. Vangronsveld & S. C. Cunningham (Eds.), Metal-contaminated soils: in situ inactivation and phytorestoration (pp. 235–248). Heidelberg: Springer.

    Google Scholar 

  • Black, G. R. (1965). Bulk density: method of soil analysis. Monograph No. 9 Part I. Washington, DC: American Society of Agronomy Inc.

    Google Scholar 

  • Blaylock, M. J., Salt, D. E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., et al. (1977). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science & Technology, 31, 860–865.

    Article  Google Scholar 

  • Borgegård, S.-O., & Rydin, H. (1989). Utilization of waste products and inorganic fertilizer in the restoration of iron-mine tailings. Journal of Applied Ecology, 26, 1083–1088.

    Article  Google Scholar 

  • Bradshaw, A. (1997). Restoration of mined lands—using natural processes. Ecological Engineering, 8, 255–269.

    Article  Google Scholar 

  • Bray, R. H., & Kurtz, L. T. (1945). Determination of total, organic and available forms of phosphorus in soil. Soil Science, 59, 39–45.

    Google Scholar 

  • Chantachon, S., Kruatrachue, M., Pokethitiyook, P., Upatham, E., Tantanasarit, S., & Soonthornsarathool, V. (2004). Phytoextraction and accumulation of lead from contaminated soil by vetiver grass: laboratory and simulated field study. Water, Air, and Soil Pollution, 154, 37–55.

    Article  CAS  Google Scholar 

  • Charman, P. E. V., & Murphy, B. W. (1992). A soil conservation handbook for New South Wales. Sydney: Sydney University Press.

    Google Scholar 

  • Chen, Y., Shen, Z., & Li, X. (2004). The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Applied Geochemistry, 19, 1553–1565.

    Article  CAS  Google Scholar 

  • Cheraghi, M., Lorestani, B., Khorasani, N., Yousefi, N., & Karami, M. (2011). Findings on the phytoextraction and phytostabilization of soils contaminated with heavy metals. Biological Trace Element Research, 144, 1133–1141. doi:10.1007/s12011-009-8359-0.

    Article  CAS  Google Scholar 

  • Chiu, K. K., Ye, Z. H., & Wong, M. H. (2006). Growth of Vetiveria zizanioides and Phragmities australis on Pb/Zn and Cu mine tailings amended with manure compost and sewage sludge: a greenhouse study. Bioresource Technology, 97, 158–170.

    Article  CAS  Google Scholar 

  • Fetalvero, E. G. (2012). Tiger grass, Thysanolaena maxima (Roxb.) O. Kuntze: a review of its biology and uses. Retrieved 12 May 2013 from http://www.scribd.com/doc/105368991/Tiger-Grass-Thysanolaena-Maxima-Review-of-Its-Biology-and-Uses.

  • Friedland, A. J. (1989). The movement of metals through soils and ecosystems. In A. J. Shaw (Ed.), Heavy metal tolerance in plants: evolutionary aspects (pp. 7–20). Boca Raton, FL: CRC.

    Google Scholar 

  • Hunt, R. (1982). Plant growth curves. London: Edward Arnold.

    Google Scholar 

  • ICARDA (International Center for Agricultural Research in the Dry Areas). (2001). Soil and plant analysis laboratory manual. Syria: ICARDA and NARC.

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1984). Trace elements in soils and plants. Boca Raton, FL: CRC.

    Google Scholar 

  • Kantawanichkul, S., Pilaila, S., Tanapiyawanich, W., Tikampornpittaya, W., & Kamkrua, S. (1999). Wastewater treatment by tropical plants in vertical-flow constructed wetlands. Water Science and Technology, 40(3), 173–178.

    Article  CAS  Google Scholar 

  • Lai, H. Y., & Chen, Z. S. (2004). Effects of EDTA on solubility of cadmium, zinc and lead and their uptake by rainbow pink and vetiver grass. Chemosphere, 55(3), 421–430.

    Article  CAS  Google Scholar 

  • Lozano-Cerezo, M. L., Fernández-Marcos, M. L., & Álvarez-Rodriguez, E. (1999). Heavy metals in mine soils amended with sewage sludge. Land Degradation and Development, 10, 555–564.

    Article  Google Scholar 

  • Meeinkuirt, W., Tanhan, P., Pokethitiyook, P., Kruatrachue, M., & Chaiyarat, R. (2012). Phytostabilization of lead by various tree species using pot and field trial experiments. International Journal of Phytoremediation, 14(9), 925–938.

    Article  Google Scholar 

  • Mekonnen, A. (2001). Erosion control in agricultural areas: an Ethiopian perspective. IFSP-Ethiopia Proceedings, 2nd International Vetiver Conference (IVC), Thailand.

  • Mendez, M. O., & Maier, P. M. (2008). Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environmental Health Perspectives, 116(3), 278–283.

    Article  CAS  Google Scholar 

  • Milton, A., Johnson, M. S., & Cooke, J. A. (2002). Lead within ecosystems on metalliferous mine tailings in Wales and Ireland. The Science of the Total Environment, 299, 177–190.

    Article  CAS  Google Scholar 

  • Mohammad, M. J., & Athamneh, B. M. (2004). Changes in soil fertility and plant uptake of nutrients and heavy metals in response to sewage sludge application to calcareous soil. Journal of Agronomy, 3(3), 229–236.

    Article  Google Scholar 

  • Mucciarelli, M., Bertea, C. M., & Scannerini, S. (1998). Vetiveria zizanioides as a tool for environmental engineering. Acta Horticulturae, 457, 261–269.

    Google Scholar 

  • National Research Council (NRC). (2005). Mineral tolerance of Animals. 2nd revised ed. Washington D.C.: National Academic Press.

  • Pichtel, J., & Salt, C. A. (1998). Vegetative growth and trace metal accumulation on metalliferous wastes. Journal of Environmental Quality, 27, 618–642.

    Article  CAS  Google Scholar 

  • Rizzi, L., Petruzelli, G., Poggio, G., & Vigna Guidi, G. (2004). Soil physical changes and plant availability of Zn and Pb in a treatability test of phytostabilization. Chemosphere, 57, 1039–1046.

    Article  CAS  Google Scholar 

  • Rotkittikhun, P., Kruatrachue, M., Chaiyarat, R., Ngernsansaruay, C., Pokethitiyook, P., Paijitprapaporn, A., et al. (2006). Uptake and accumulation of lead by plants from the Bo Ngam lead mine area in Thailand. Environmental Pollution, 144, 681–688.

    Article  CAS  Google Scholar 

  • Rotkittikhun, P., Chaiyarat, R., Kruatrachue, M., Pokethitiyook, P., & Baker, A. J. M. (2007). Growth and lead accumulation by the grasses Vetiveria zizanioides and Thysanolaena maxima in lead-contaminated soil amended with pig manure and fertilizer: a glasshouse study. Chemosphere, 66, 45–53.

    Article  CAS  Google Scholar 

  • Saikia, D. C., Goswami, T., & Chaliha, B. P. (1992). Paper from Thysanolaena maxima. Bioresource Technology, 40, 245–248.

    Article  CAS  Google Scholar 

  • Santibáñez, C., Verdugo, C., & Ginocchio, R. (2008). Phytostabilization of copper mine tailings with biosolids: implications for metal uptake and productivity of Lolium perenne. The Science of the Total Environment, 395, 1–10.

    Article  Google Scholar 

  • Shu, W. S., Xia, H. P., Zhang, Z. Q., Lan, C. Y., & Wong, M. H. (2002). Use of vetiver and other three grasses for revegetation of Pb/Zn mine tailings: field experiment. International Journal of Phytoremediation, 4, 1–11.

    Article  Google Scholar 

  • Simon, L. (2005). Stabilization of metals in acidic mine spoil with amendments and red fescue (Festuca rubra L.) growth. Environmental Geochemistry and Health, 27, 289–300.

    Article  CAS  Google Scholar 

  • Sudshishri, S., Dass, A., & Lenka, N. K. (2008). Efficacy of vegetative barriers for rehabilitation of degraded hill slopes in eastern India. Soil and Tillage Research, 99(1), 98–107.

    Article  Google Scholar 

  • Tanhan, P., Pokethitiyook, P., Kruatrachue, M., Chaiyarat, R., & Upatham, S. (2011). Effects of soil amendments and EDTA on lead uptake by Chromolaena odorata: greenhouse and field trial experiments. International Journal of Phytoremediation, 13, 897–911.

    Article  CAS  Google Scholar 

  • Tordoff, G. M., Baker, A. J. M., & Willis, A. J. (2000). Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere, 41, 219–228.

    Article  CAS  Google Scholar 

  • Tracey, D., & Baker, B. (2005). Heavy metals in fertilizers used in organic production. Organic Materials Review Institute. Retrieved 15 December 2011 from http://www.horticulture.umn.edu.

  • Truong, P. (2000). Vetiver grass for mine site rehabilitation and reclamation. Extended Abstract. Proceedings of the Remade Lands International Conference, Frementle, Australia.

  • Truong, P. N., & Baker, D. (1996). Vetiver grass for the stabilization and rehabilitation of acid sulfate soils. Proceedings of the Second National conference acid sulfate soils. Coffs Harbour, Australia, pp. 196–198.

  • Vangronsveld, J., Vanassche, F., & Clijsters, H. (1995). Reclamation of a bare industrial-area contaminated by non ferrous metals in-situ metal immobilization and revegetation. Environmental Pollution, 87, 51–59.

    Article  CAS  Google Scholar 

  • Walkley, A., & Black, C. A. (1934). An examination of degradation method for determining soil organic matter: a proposed modification of the chromic acid titration method. Soil Science, 37, 29–35.

    Article  CAS  Google Scholar 

  • Wilde, E. W., Brigmon, R. L., Dunn, D. L., Heitkamp, M. A., & Dagnan, D. C. (2005). Phytoextraction of lead from firing range soil by vetiver grass. Chemosphere, 61, 1451–1457.

    Article  CAS  Google Scholar 

  • Wong, M. H. (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soil. Chemosphere, 50, 775–780.

    Article  CAS  Google Scholar 

  • Xia, H. P. (2004). Ecological rehabilitation and phytoremediation with four grasses in oil shale mined land. Chemosphere, 54, 345–353.

    Article  CAS  Google Scholar 

  • Yang, B., Shu, W. S., Ye, Z. H., Lan, C. Y., & Wong, M. H. (2003). Growth and metal accumulation in vetiver and two Sesbania species on lead/zinc mine tailings. Chemosphere, 52, 1593–1600.

    Article  CAS  Google Scholar 

  • Yimyong, S., Sangwantanaroj, U. & Punnapayak, H. (2005). Use of weeds for the production of cellulose and ethanol. 1st International Conference on Fermentation Technology for Value Added Agricultural Products. Khon Kaen, Thailand, pp. P-NF21.

  • Zou, T., Li, T., Zhang, X., Yu, H., & Huang, H. (2012). Lead accumulation and phytostabilization potential of dominant plant species growing in a lead–zinc mine tailing. Environmental Earth Sciences, 65, 621–630. doi:10.1007/s12665-011-1109-6.

    Article  CAS  Google Scholar 

  • Zu, Y. Q., Li, Y., Chen, J. J., Chen, H. Y., Qin, L., & Schvartz, C. (2005). Hyperaccumulation of Pb, Zn, and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environmental International, 31, 755–762.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is part of the PhD dissertation of Mr. Weeradej Meeinkuirt that was supported and funded by the Office of Commission on Higher Education through a grant in the program “Strategic Scholarships for Frontier Research Network for the Ph.D. program”; Post-Graduate Education, the Centre on Environmental Health, Toxicity and Management of Toxic Chemicals under Science and Technology Postgraduate Education and Research Development Office (PERDO) of the Ministry of Education and Mahidol University, Bangkok, Thailand. We would like to thank Asst. Prof. Philip D. Round for editing the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maleeya Kruatrachue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meeinkuirt, W., Kruatrachue, M., Tanhan, P. et al. Phytostabilization Potential of Pb Mine Tailings by Two Grass Species, Thysanolaena maxima and Vetiveria zizanioides . Water Air Soil Pollut 224, 1750 (2013). https://doi.org/10.1007/s11270-013-1750-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1750-7

Keywords

Navigation