Skip to main content

Advertisement

Log in

Metal-tolerant thermophiles: metals as electron donors and acceptors, toxicity, tolerance and industrial applications

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Metal-tolerant thermophiles are inhabitants of a wide range of extreme habitats like solfatara fields, hot springs, mud holes, hydrothermal vents oozing out from metal-rich ores, hypersaline pools and soil crusts enriched with metals and other elements. The ability to withstand adverse environmental conditions, like high temperature, high metal concentration and sometimes high pH in their niche, makes them an interesting subject for understanding mechanisms behind their ability to deal with multiple duress simultaneously. Metals are essential for biological systems, as they participate in biochemistries that cannot be achieved only by organic molecules. However, the excess concentration of metals can disrupt natural biogeochemical processes and can impose toxicity. Thermophiles counteract metal toxicity via their unique cell wall, metabolic factors and enzymes that carry out metal-based redox transformations, metal sequestration by metallothioneins and metallochaperones as well as metal efflux. Thermophilic metal resistance is heterogeneous at both genetic and physiology levels and may be chromosomally, plasmid or transposon encoded with one or more genes being involved. These effective response mechanisms either individually or synergistically make proliferation of thermophiles in metal-rich habitats possibly. This article presents the state of the art and future perspectives of responses of thermophiles to metals at genetic as well as physiological levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdelouas W, Gong W, Lutze J, Shelnutt R, Franco Moura I (2000) Using cytochrome c3 to make selenium nanowires. Chem Mater 12(6):1510–1512

    Article  CAS  Google Scholar 

  • Acar S, Brierley JA, Wan RY (2005) Conditions for bioleaching a covellite-bearing ore. Hydrometallurgy 77:239–246

    Article  CAS  Google Scholar 

  • Ackerley DF, Gonzalez CF, Park CH, Blake RII, Keyhan M, Martin A (2004) Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Appl Environ Microbiol 70(2):873–882

    Article  CAS  Google Scholar 

  • Aguiar P, Beveridge TJ, Reysenbach A-L (2004) Sulfurihydrogenibium azorense, sp. nov., a thermophilic hydrogen-oxidizing microaerophile from terrestrial hot springs in the Azores. Int J Syst Evol Microbiol 54:33–39

    Article  CAS  Google Scholar 

  • Ahmann D, Krumholz LR, Hemond HF, Lovley DR, Morel FMM (1999) Microbial mobilization of arsenic from sediments of the Aberjona watershed. Environ Sci Technol 31:2923–2930

    Article  Google Scholar 

  • Aiking H, Stijnman A, van Garderen C, van Heerikhuizen H, van’t Riet J (1984) Inorganic phosphate accumulation and cadmium detoxification in Klebsiella aerogenes CTC 418 growing in continuous culture. Appl Environ Microbiol 47:374–377

    CAS  Google Scholar 

  • Akhtar K, Akhtar MW, Khalid AM (2007) Removal and recovery of uranium from aqueous solutions by Trichoderma harzianum. Wat Res 41:1366–1378

    Article  CAS  Google Scholar 

  • Alkan H, Gul-Guven R, Guven K, Erdogan S, Dogru M (2015) Biosorption of Cd2+, Cu2+ and Ni2+ ions by a thermophilic haloalkalitolerant bacterial strain (KG9) immobilized on Amberlite XAD-4. Pol J Environ Stud 24(5):1903–1910

    Article  CAS  Google Scholar 

  • Almeida MAN, de Franca FP (1999) Thermophilic and mesophilic bacteria in biofilms associated with corrosion in a heat exchanger. World J Microbiol Biotechnol 154:39–442

    Google Scholar 

  • Antonioli P, Lampis S, Chesini I, Vallini G, Rinalducci S, Zolla L, Righetti PG (2007) Stenotrophomonas maltophilia SeITE02, a new bacterial strain suitable for bioremediation of selenite-contaminated environmental matrices. Appl Environ Microbiol 73:6854–6863

    Article  CAS  Google Scholar 

  • Appenroth KJ (2010) Definition of “heavy metals” and their role in biological systems. In: Sherameti I, Varma A (eds) Soil heavy metals (soil biology), vol 19. Springer, Berlin, pp 19–29

    Chapter  Google Scholar 

  • Arakaki WJ, Matsunaga T (2003) A novel protein tightly bound to bacterial magnetic particles in magnetospirillum magneticum strain AMB-1. J Biol Chem 278(10):8745–8750

    Article  CAS  Google Scholar 

  • Asadi S, Shahni S, Ibrahim Z, Yahya A et al (2014) Isolation and characterization of metals and antibiotic resistant psychrotrophic bacteria from refrigerated spoiled food. Jurnal Teknologi 69(1):131–135

    Article  Google Scholar 

  • Auernik KS, Kelly RM (2008) Identification of components of electron transport chains in the extremely thermoacidophilic crenarchaeon Metallosphaera sedula through iron and sulfur compound oxidation transcriptomes. Appl Environ Microbiol 74:7723–7732

    Article  CAS  Google Scholar 

  • Auernik KS, Maezato Y, Blum PH, Kelly RM (2008) The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism. Appl Environ Microbiol 74:682–692

    Article  CAS  Google Scholar 

  • Ayangbenro AS, Babalola OO (2017) A new stratergy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14:94

  • Babàk L, Šupinova P, Zichova M, Burdychova R, Vitova E (2012) Biosorption of Cu, Zn and Pb by thermophilic bacteria—effect of biomass concentration on biosorption capacity. Acta Univ Agric Silvic Mendel Brun LX(5):9–18

    Article  Google Scholar 

  • Baillet F, Magnin JP, Cheruy A, Ozil P (1997) Cadmium tolerance and uptake in Thiobacillus ferrooxidans biomass. Environ Technol 18:631–637

    Article  CAS  Google Scholar 

  • Bajpai S, Kamboj M (2016) Harmful chemicals: impact on environment. Int J Adv Res 4(5):1800–1806

    Article  Google Scholar 

  • Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152

  • Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV (2006) Co-selection of antibiotic and metal resistance. Trends Microbiol 14:176–182

    Article  CAS  Google Scholar 

  • Balkwill DL, Kieft TL, Tsukuda T, Kostandarithes HM, Onstott TC, Macnaughton S, Bownas J, Fredrickson JK (2004) Identification of iron-reducing Thermus strain as Thermus scotoductus. Extremophiles 8:37–44

    Article  CAS  Google Scholar 

  • Ballatori N (2002) Transport of toxic metals by molecular mimicry. Environmental Health Perspectives 110:689–694

    Article  CAS  Google Scholar 

  • Bandeiras TM, Refojo PN, Todorovic S, Murgida DH, Hildebrandt P, Bauer C, Pereira MM, Kletzin A, Teixeira M (2009) The cytochrome ba complex from the thermoacidophilic crenarchaeote Acidianus ambivalens is an analog of bc(1) complexes. Biochim Biophys Acta 1787:37–45

    Article  CAS  Google Scholar 

  • Bao P, Xu XW et al (2016) Characterization and potential applications of a selenium nanoparticle producing and nitrate reducing bacterium Bacillus oryziterrae sp. nov. Scientific Reports 6:34054

  • Barkay T, Wagner-Dobler I (2005) Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment. Adv Appl Microbiol 57:1–52

    Article  CAS  Google Scholar 

  • Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to interactions of bacteria with metals ecosystems. FEMS Microbiol Rev 27:355–384

  • Barkay T, Kritee K, Boyd E, Geesey GG (2010) A thermophilic bacterial origin and subsequent constraints by redox, light and salinity on the evolution of the microbial mercuric reductase. Environ Microbiol 12:2904–2917

    Article  CAS  Google Scholar 

  • Barr DW, Ingledew WJ, Norris PR (1990) Respiratory chain components of iron-oxidizing acidophilic bacteria. FEMS Microbiol Lett 70:85–89

    Article  CAS  Google Scholar 

  • Bathe S, Norris PR (2007) Ferrous iron- and sulfur-induced genes in Sulfolobus metallicus. Appl Environ Microbiol 73:2491–2497

    Article  CAS  Google Scholar 

  • Battaglia-Brunet F, Crouzet C, Breeze D, Tris H, Morin D (2011) Decreased leachability of arsenic linked to biological oxidation of As(III) in solid wastes from bioleaching liquors. Hydrometallurgy 107:34–39

    Article  CAS  Google Scholar 

  • Batty JD, Rorke GV (2006) Development and commercial demonstration of BioCOP™ thermophile process. Hydrometallurgy. 16th International Biohydrometallurgy Symposium 83(1–4):83–89

    Article  CAS  Google Scholar 

  • Bhattacharya S, Basu S, Chaudhuri P, Santra SC (2013) Assessment of mercury detoxification potentiality of isolated Streptococcus sp. MTCC 9724 under different environmental conditions. Environ Ecol Res 1(2):62–72

    Google Scholar 

  • Bissen M, Frimmel FH (2003) Arsenic—a review. Part I: occurrence, toxicity, speciation, mobility. Acta Hydrochimica et Hydrobiologica 31:9–18

    Article  CAS  Google Scholar 

  • Blake RC, Shute EA, Greenwood MM, Spencer GH, Ingledew WJ (1993) Enzymes of aerobic respiration on iron. FEMS Microbiol Rev 11:9–18

    Article  CAS  Google Scholar 

  • Blencowe DK, Morby AP (2003) Zn(II) metabolism in prokaryotes. FEMS Microbiol Rev 27:291–311

    Article  CAS  Google Scholar 

  • Blindauer CA, Harrison MD (2002) Multiple bacteria encode metallothioneins and Smt-like zinc fingers. Mol Microbiol 45(2):1421–1432

    Article  CAS  Google Scholar 

  • Boone DR, Liu Y, Zhao ZJ, Balkwill DL, Drake GR, Stevens TO, Aldrich HC (1995) Bacillus infernus sp. nov., an Fe(III)- and Mn(III)-reducing anaerobe from the deep terrestrial subsurface. Int J Syst Bacteriol 45:441–448

    Article  CAS  Google Scholar 

  • Borrok D, Fein JB, Kulpa CF (2004) Proton and Cd adsorption onto natural bacterial consortia: testing universal adsorption behavior. Geochim Cosmochim Acta 68:3231–3238

    Article  CAS  Google Scholar 

  • Boyanov MI, Kelly SD, Kemner KM, Bunker BA, Fein JB, Fowle DA (2003) Adsorption of cadmium to Bacillus subtilis bacterial cell walls: a pH-dependent X-ray absorption fine structure spectroscopy study. Geochim Cosmochim Acta 67:3299–3311

    Article  CAS  Google Scholar 

  • Boyd ES et al (2009) Methylmercury enters an aquatic food web through acidophilic microbial mats in Yellowstone National Park, WY. Environ Microbiol 11:950–959

    Article  CAS  Google Scholar 

  • Bridge T, Johnson DB (1998) Reduction of soluble iron and reductive dissolution of ferric iron-containing minerals by moderately thermophilic iron-oxidizing bacteria. Appl Environ Microbiol 64:2181–2186

    CAS  Google Scholar 

  • Brierley JA (1990) Acdidophilic thermophilic archaebacteria: potential application for metals recovery. FEMS Microbiol Rev 75:287–292

    Article  CAS  Google Scholar 

  • Brierley JA (2008) A perspective on developments in biohydrometallurgy. Hydrometallurgy 94:2–7

    Article  CAS  Google Scholar 

  • Brierley CL, Brierley JA (1973) A chemoautotrophic and thermophilic microorganism isolated from an acid hot spring. Can J Microbiol 19:183–188

    Article  CAS  Google Scholar 

  • Brierley CL, Brierley JA (2013) Progress in bioleaching: part B: applications of microbial processes by minerals industries. Appl Microbiol Biotechnol 97:7543–7552

    Article  CAS  Google Scholar 

  • Brim H, Venkateswaran A, Kostandarithes HM, Fredrickson JK, Daly MJ (2003) Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments. Appl Environ Microbiol 69:4545–4582

    Article  CAS  Google Scholar 

  • Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Microbiol 84:54–68

    CAS  Google Scholar 

  • Brock TD, Gustafson J (1976) Ferric iron reduction by sulfur- and iron-oxidizing bacteria. Appl Environ Microbiol 32:567–571

    CAS  Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207

    Article  CAS  Google Scholar 

  • Burnett PGG, Daughney CJ, Peak D (2006) Cd adsorption onto Anoxybacillus flavithermus: surface complexation modeling and spectroscopic investigations. Geochim Cosmochim Acta 70:5253–5269

    Article  CAS  Google Scholar 

  • Camargo FAO, Okeke BC, Bento FM, Frankenberger WT (2003) In vitro reduction of hexavalent chromium by a cell free extract of Bacillus sp. ES29 stimulated by Cu. Appl Microbiol Biotechnol 62:569–573

    Article  CAS  Google Scholar 

  • Campos J, Martinez-Pacheco M, Cervantes C (1995) Hexavalent-chromium reduction by a chromate-resistant Bacillus sp. strain. Antonie van Leeuwenhoek 68:203–208

    Article  CAS  Google Scholar 

  • Carlson HK, Iavarone AT, Gorur A et al (2012) Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria. P Natl Acad Sci USA 109:1702–1707

    Article  CAS  Google Scholar 

  • Casas-Flores S, Gomez-Rodriguez EY, Garcia-Meza JV (2015) Community of thermoacidophilic and arsenic resistant microoirganisms isolated from a deep profile of mine heaps. AMB Express 5(54):1–12

    CAS  Google Scholar 

  • Cason ED, Piater LA, van Heerden E (2012) Reduction of U(VI) by the deep subsurface bacterium, Thermus scotoductus SA-01, and the involvement of the ABC transporter protein. Chemosphere. 86(6):572–527

    Article  CAS  Google Scholar 

  • Castresana J, Lübben M, Saraste M (1995) New archaebacterial genes coding for redox proteins: implications for the evolution of aerobic metabolism. J Mol Biol 250:202–210

    Article  CAS  Google Scholar 

  • Cervantes C, Garcia JC, Devars S, Corona FG, Tavera HL, Guzman JC, Sanchez RM (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  CAS  Google Scholar 

  • Chaisuksant Y (2003) Biosorption of cadmium (II) and copper (II) by pretreated biomass of marine alga Gracilaria fisheri. Environ Technol 24:1501–1508

    Article  CAS  Google Scholar 

  • Chang JS, Yoon IH, Lee JH, Kim KR, An J, Kim KW (2010) Arsenic detoxification potential of aox genes in arsenite-oxidizing bacteria isolated from natural and constructed wetlands in the Republic of Korea. Environ Geochem Health 32(2):95–105

    Article  CAS  Google Scholar 

  • Chatziefthimiou AD, Crespo-Medina M, Wang Y, Vetriani C, Barkay T (2007) The isolation and initial characterization of mercury resistant chemolithotrophic thermophilic bacteria from mercury rich geothermal springs. Extremophiles 11:469–479

    Article  CAS  Google Scholar 

  • Chen L, Brügger K, Skovgaard M, Redder P, She Q, Torarinsson E, Greve B, Awayez M, Zibat A, Klenk H et al (2005) The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol 187:4992–4999

    Article  CAS  Google Scholar 

  • Cheung KH, Gu JD (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodet Biodegrad 59:8–15

    Article  CAS  Google Scholar 

  • Cheung KH, Lai HY, JD G (2006) Membrane-associated hexavalent chromium reductase of Bacillus megaterium TKW3 with induced expression. J Microbiol Biotechnol 16:855–862

    CAS  Google Scholar 

  • Childers SE, Lovley DR (2001) Differences in Fe(III) reduction in the hyperthermophilic archaeon Pyrobaculum islandicum versus mesophilic Fe(III)-reducing bacteria. FEMS Microbiol Lett 195:253–258

    Article  CAS  Google Scholar 

  • Chiu HJ, Johnson E, Schroeder I, Rees DC (2001) Crystal structures of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus and its complex with NADP(+). Structure 9:311–319

    Article  CAS  Google Scholar 

  • Choi SB, Yun YS (2006) Biosorption of cadmium by various types of dried sludge: an equilibrium study and investigation of mechanisms. J Hazard Mater 138(2):378–383

    Article  CAS  Google Scholar 

  • Choi Y, Jung E, Park H et al (2004) Construction of microbial fuel cells using thermophilic microorganisms, Bacillus licheniformis and Bacillus thermoglucosidasius. B Korean Chem Soc 25:813–818

    Article  CAS  Google Scholar 

  • Chudaev OV, Chudaeva VA, Karpov GA, Edmunds UM, Shand P (2000) Geokhimiya vod osnovnykh geotermal’nykh raionov Kamchatki (Geochemistry of Waters in the Main Geothermal Regions of Kamchatka). Dal’nauka, Vladivostok

    Google Scholar 

  • Cochrane WW (1958) Farm prices: myth and reality. St. Paul University of Minnesota Press

  • Correa-Llantén DN, Munoz-Ibacache SA, Maire M, Blamey JM (2014) Enzyme involvement in the biosynthesis of selenium nanoparticles by Geobacillus wiegelii strain Gwe1 isolated from a drying oven. Int J Biol Biomol Agric Food Biotechnol Eng 8(6):637–641

  • Cummings DE, Caccavo F Jr, Fendorf S, Rosenzweig RF (1999) Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Environ Sci Technol 33:723–729

  • D’Abzac P, Bordas F, Joussein E, van Hullebusch E, Lens PNL, Guibaud G (2010a) Characterization of the mineral fraction associated to extracellular polymeric substances (EPS) in anaerobic granular sludge. Environ Sci Technol 44:412–418

    Article  CAS  Google Scholar 

  • D’Abzac P, Bordas PF, van Hullebusch E, Lens PNL, Guibaud G (2010b) Extraction of extracellular polymeric substances (EPS) from anaerobic granular sludges: comparison of chemical and physical extraction protocols. Appl Microbiol Biotechnol 85:1589–1599

    Article  CAS  Google Scholar 

  • Das TK, Gomes CM, Bandeiras TM, Pereira MM, Teixeira M, Rousseau DL (2004) Active site structure of the aa3 quinol oxidase of Acidianus ambivalens. Biochim Biophys Acta 1655:306–320

    Article  CAS  Google Scholar 

  • Daulton TL, Little BJ, Jones-Meehan J, Blom DA, Allard LF (2007) Microbial reduction of chromium from the hexavalent to divalent state. Geochim Cosmochim Acta 71:556–565

    Article  CAS  Google Scholar 

  • Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74(3):417–433

    Article  CAS  Google Scholar 

  • Desai C, Jain K, Madamwar D (2008) Hexavalent chromate reductase activity in cytosolic fractions of Pseudomonas sp. G1DM21 isolated from Cr(VI) contaminated industrial landfill. Process Biochem 43:713–721

  • Dhanjal S, Cameotra SS (2010) Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb Cell Fact 9:52

    Article  CAS  Google Scholar 

  • Dinkla IJT, Gericke M, Geurkink BK, Hallberg KB (2009) Acidianus brierleyi is the dominant thermoacidophile in a bioleaching community processing chalcopyrite containing concentrates at 70°C. Adv Mater Res 71:67–70

    Article  Google Scholar 

  • Dixit S, Hering JG (2003) Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ Sci Technol 37:4182e4189

    Article  CAS  Google Scholar 

  • Dobias E, Suvorova R, Bernier-Latmani (2011) Role of proteins in controlling selenium nanoparticle size. Nanotechnology 22(19):1–9

    Article  CAS  Google Scholar 

  • Dogan NM, Doganli GA, Dogan G, Bozkaya O (2015) characterization of extracellular polysaccharides (eps) produced by thermal Bacillus and determination of environmental conditions affecting exopolysaccharide production. Int J Environ Res 9(3):1107–1116

    CAS  Google Scholar 

  • Domic EM (2007) A review of the development and current status of copper bioleaching operations in Chile: 25 years of successful commercial implementation. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, Berlin, pp 81–95

    Chapter  Google Scholar 

  • Donahoe-Christiansen J, Imperio SD, Jackson CR, Inskeep WP, McDermott TR (2004) Arsenite-oxidizing Hydrogenobaculum strain isolated from an acid-sulfate-chloride geothermal spring in Yellowstone National Park. Appl Environ Microbiol 70:1865–1868

  • Donati ER, Castro C, Urbieta MS (2016) Thermophilic microorganisms in biominning. World J Microbiol Biotechnol 32(11):179

    Article  CAS  Google Scholar 

  • Dopson M, Baker-Austin C, Koppineedi PR, Bond PL (2003) Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149:1959–1970

  • Dopson M, Ni G, Sleutels HJA, Tom (2015) Possibilities for extremophilic microorganisms in microbial electrochemical systems. FEMS Microbiol Rev 044(40):164–181

    Google Scholar 

  • Edgcomb VP, Molyneaux SJ, Saito MA, Lloyd K et al (2004) Sulfide ameliorates metal toxicity for deep-sea hydrothermal vent archaea. Appl Environment Microbiol 70(4):2551–2555

    Article  CAS  Google Scholar 

  • Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1796–1799

    Article  CAS  Google Scholar 

  • Erauso G, Reysenbach A-L, Godfry A et al (1993) Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol 160(5):338–349

    Article  CAS  Google Scholar 

  • Ferreira AC, Nobre MF, Rainey FA, Silva MT, Waite R, Burghardt J, Chung AP, da Costa MS (1997) Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 47:939–947

    Article  CAS  Google Scholar 

  • Francis AJ, Dodge CJ (2008) Bioreduction of uranium(VI) complexed with citric acid by Clostridia affects its structure and solubility. Environ Sci Technol 42:8277–8282

    Article  CAS  Google Scholar 

  • Francois F, Lombard C, Gulgner JM, Soreau P, Brlan-Jalsson F, Martino G, Vandervennet M, Garda D et al (2011) Isolation and characterization of environmental bacteria capable of extracellular biosorption of mercury. Appl Environ Microbiol:1097–1106

  • Freedman Z, Zhu C, Barkay T (2012) Mercury resistance a mercuric reductase activated and expression among chemotrophic thermophilic Aquificae. Appl Environ Microbiol 78(18):6568–6575

    Article  CAS  Google Scholar 

  • Fu Q, Kobayashi H, Kuramochi Y et al (2013) Bioelectrochemical analyses of a thermophilic biocathode catalyzing sustainable hydrogen production. Int J Hydrogen Energ 38:15638–15645

    Article  CAS  Google Scholar 

  • Fuchs T, Huber H, Teiner K, Burggraf S, Stetter KO (1995) Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic archaeum, isolated from a uranium mine in Germany. Syst Appl Microbiol 18:560–566

    Article  Google Scholar 

  • Fuchs T, Huber H, Burggraf S, Stetter KO (1996) 16S rDNA-based phylogeny of the archaeal order Sulfolobales and reclassification of Desulfurolobus ambivalens as Acidianus ambivalens comb. nov. Syst Appl Microbiol 19:56–60

    Article  CAS  Google Scholar 

  • Gabr RM, Hassan SHA, Shoreit AAM (2008) Biosorption of lead and nickel by living and nonliving cells of Pseudomonas aeruginosa ASU 6a. Int Biodeterior Biodegradation 62:195–203

    Article  CAS  Google Scholar 

  • Gadd GM, White C (1993) Microbial treatment of metal pollution—a working biotechnology? Trends Biotechnol 11:353–359

    Article  CAS  Google Scholar 

  • Ganguli A, Tripathi AK (2002) Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors. Appl Microbiol Biotechnol 58:416–420

    Article  CAS  Google Scholar 

  • Gao X, Zhang J, Zhang L (2002) Hollow sphere selenium nanoparticles: their in vitro anti-hydroxyl radical effect. Adv Mater 14(4):290–293

    Article  CAS  Google Scholar 

  • Gavrilov SN, Slobodkin AI, Bonch-Osmolovskaya EA, de Vries S, Robb F (2004) Characterization of membrane-bound Fe(III) reductase activities from thermophilic gram-positive dissimilatory iron-reducing bacterium Thermoterrabacterium ferrireducens. Abstr 5th Int Conf on Extremophiles, Sept 19–23, Cambridge, Maryland, USA, pp 111

  • Geissler A (2007) Prokaryotic microorganisms in uranium mining waste piles and their interactions with uranium and other heavy metals. Ph.D. Thesis, der Technischen Universität Bergakademie, Freiberg

  • Ghalib AK, Yasin M, Faisal M (2014) Characterization and metal detoxification potential of moderately thermophilic Bacillus cereus from geothermal springs of Himalayas. Braz Arch Biol Technol 57(4):554–560

    Article  Google Scholar 

  • Ghosh S, Mahapatra NR, Banerjee PC (1997) Metal resistance in Acidocella strains and plasmid-mediated transfer of this characteristic to Acidiphilium multivorum and Escherichia coli. Appl Environ Microbiol 63:4523–4527

    CAS  Google Scholar 

  • Gihring TM, Druschel GK, McCleskey RB, Hamers RJ, Banfield JF (2001) Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: field and laboratory investigations. Environ Sci Technol 35:3857–3862

    Article  CAS  Google Scholar 

  • Giovanella P, Costa AP, Schäffer N, Peralba MCR, Camargo FAO, Bento FM (2015) Detoxification of mercury by bacteria using crude glycerol from biodiesel as a carbon source. Water Air Soil Pollu 226:224

    Article  CAS  Google Scholar 

  • Girma G (2015) Microbial bioremediation of some heavy metals in soils: an updated review. Indian J Sci Res 6(1):147–161

    CAS  Google Scholar 

  • Giuffrè A, Gomes CM, Antonini G, D’Itri E, Teixeira M, Brunori M (1997) Functional properties of the quinol oxidase from Acidianus ambivalens and the possible catalytic role of its electron donor—studies on the membrane-integrated and purified enzyme. Eur J Biochem 250:383–388

    Article  Google Scholar 

  • Glasauer S, Langley S, Beveridge TJ (2002) Intracellular iron minerals in a dissimilatory iron-reducing bacterium. Science 295:117–119

    Article  CAS  Google Scholar 

  • Glasauer S, Langley S, Beveridge J (2004) Intracellular manganese granules formed by subsurface bacterium. Environ Microbiol 6:1042–1048

    Article  CAS  Google Scholar 

  • Gleißner M, Kaiser U, Antonopoulos E, Schäfer G (1997) The archaeal SoxABCD complex is a proton pump in Sulfolobus acidocaldarius. J Biol Chem 272:8417–8426

    Article  Google Scholar 

  • Glendinning KJ, Macaskie LE, Brown NL (2005) Mercury tolerance of thermophilic Bacillus sp. and Ureibacillus sp. Biotechnol Lett 27:1657–1662

    Article  CAS  Google Scholar 

  • Godlewska Zylkiewicz B (2006) Microorganisms in inorganic chemical analysis. Anal Bioanal Chem 38:114–123

    Article  CAS  Google Scholar 

  • Gold T (1992) The deep, hot biosphere. Proc Natl Acad Sci USA 89:6045–6049

    Article  CAS  Google Scholar 

  • Golovacheva RS, Karavaiko GI (1979) Sulfobacillus—a new genus of spore-forming thermophilic bacteria. Microbiology (Mikrobiologiya) 48:658–665

    Google Scholar 

  • Golyshina OV, Pivovarova TA, Karavaiko GI, Kondratéva TF, Moore ER, Abraham WR, Lünsdorf H, Timmis KN, Yakimov MM, Golyshin PN (2000) Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. Int J Syst Evol Microbiol 50(3):997–1006

  • Gonzalez CF, Ackerley DF, Lynch SV, Matin A (2005) ChrR a soluble quinone reductase of Pseudomonas putida that defends against H2O2. J Biol Chem 280(24):2590e2595

    Article  CAS  Google Scholar 

  • Gorby Y, Beveridge T, Blakemore R (1988) Characterization of the bacterial magnetosome membrane. J Bacteriol 170(2):834–841

    Article  CAS  Google Scholar 

  • Gorlenko V, Tsapin A, Namsaraev Z, Teal T, Tourova T, Engler D, Mielke R, Nealson K (2004) Anaerobranca californiensis sp. nov., an anaerobic, alkalithermophilic, fermentative bacterium isolated from a hot spring on Mono Lake. Int J Syst Evol Microbiol 54:739–743

    Article  CAS  Google Scholar 

  • Goyal N, Jain SC, Banerjee UC (2003) Comparative studies on the microbial adsorption of heavy metals. Adv Environ Res 7:311–319

    Article  CAS  Google Scholar 

  • Greene AC, Patel BKC, Sheehy AJ (1997) Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Bacteriol 47:505–509

    Article  CAS  Google Scholar 

  • Green-Ruiz C, Tirado VR, Gil BGF (2008) Cadmium and zinc removal from aqueous solutions by Bacillus jeotgali: pH, salinity and temperature effects. Bioresour Technol 99:3864–3870

    Article  CAS  Google Scholar 

  • Grogan DW (1989) Phenotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains. J Bacteriol 171:6710–6719

    Article  CAS  Google Scholar 

  • Grogan D, Palm P, Zillig W (1990) Isolate B12, which harbours a virus-like element, represents a new species of the archaebacterial genus Sulfolobus, Sulfolobus shibatae, sp. nov. Arch Microbiol 154:594–599

    Article  CAS  Google Scholar 

  • Guibaud G, Comte S, Bordas F, Dupuy S, Baudu M (2005) Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacterial strains for cadmium, lead and nickel. Chemosphere 59:629–638

    Article  CAS  Google Scholar 

  • Guo HB et al (2010) Structure and conformational dynamics of the metalloregulator MerR upon binding of Hg(II). J Mol Biol 398:555–568

    Article  CAS  Google Scholar 

  • Gursahani YH (2015) Studies on thermophiles of hot water springs of Maharashtra State. Ph.D. Thesis, Dr BAM University, Aurangabad, India

  • Gursahani YH, Gupta SG (2015) Hexavalent chromium reduction by Anoxybacillus rupiensis isolated from hot water spring of Dhapoli, Maharashtra, India. J Pet Environ Biotechnol 6(4):1–5

    CAS  Google Scholar 

  • Ha PT, Lee TK, Rittmann BE et al (2012) Treatment of alcohol distillery wastewater using a Bacteroidetes-dominant thermophilic microbial fuel cell. Environ Sci Technol 46:3022–3030

    Article  CAS  Google Scholar 

  • Hallas LE, Thayer JS, Cooney JJ (1982) Factors affecting the toxic effect of tin on estuarine microorganisms. Appl Environ Microbiol 44:193–197

    CAS  Google Scholar 

  • Hallberg KB, Johnson DB (2001) Biodiversity of acidophilic prokaryotes. Adv Appl Microbiol 49:37–84

    Article  CAS  Google Scholar 

  • Han Y-L, Lo Y-C, Cheng C-L, Yu W-J, Nagarajan D, Liu C-H, Li Y-H, Chang J-S (2016) Calcium ion adsorption with extracellular proteins of thermophilic bacteria isolated from geothermal sites—a feasibility study. Biochem Eng J 117(2017):48–56

    Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  Google Scholar 

  • Hassan SHA, Kim SJ, Jung A-Y, Joo JH, SE O, Yang JE (2009) Biosorptive capacity of Cd(II) and Cu(II) by lyophilized cells of Pseudomonas stutzeri. J Gen Appl Microbiol 55:27–34

    Article  CAS  Google Scholar 

  • Hassan SHA, Awad YS, Kabir MH, Oh SE, Joo JH (2010) Bacterial biosorption of heavy metals. In: Biotechnology: cracking new pastures, pp 79–110

    Google Scholar 

  • He ZG, Zhong H, Li Y (2004) Acidianus tengchongensis sp. nov., a new species of acidothermophilic archaeon isolated from an acidothermal Spring. Curr Microbiol 48:159–163

  • He M, Li X, Liu H, Miller SJ, Wang G, Rensing C (2011) Characterization and genomic analysis of a highly chromate resistant and reducing bacterial strain Lysinibacillus fusiformis ZC1. J Hazard Mater 185(2–3):682–688

    Article  CAS  Google Scholar 

  • Heinrich-Salmeron A, Cordi A, Brochier-Armanet C, Halter D, Pagnout C, Abbaszadeh-fard E, Montaut D, Seby F, Bertin PN, Bauda P, Arsène-Ploetze F (2011) Unsuspected diversity of arsenite oxidizing bacteria as revealed by widespread distribution of aoxB gene in prokaryotes. Appl Environ Microbiol 77:4685–4692

    Article  CAS  Google Scholar 

  • Hettmann T, Schmidt CL, Anemüller S, Zähringer U, Moll H, Petersen A, Schäfer G (1998) Cytochrome b558/566 from the archaeon Sulfolobus acidocaldarius. A novel highly glycosylated, membrane-bound b-type hemoprotein. J Biol Chem 273:12032–12040

    Article  CAS  Google Scholar 

  • Hetzer A (2007) Sequestration of metal and metalloid ions by thermophilic bacteria. Ph.D. Thesis, University of Waikato, Department of Biological Sciences, Hamilton, New Zealand

  • Hetzer A, Daughney CJ, Morgan HW (2006) Cadmium ion biosorption by the thermophilic bacteria Geobacillus stearothermophilus and G. thermocatenulatus. Appl Environ Microbiol 72:4020–4027

    Article  CAS  Google Scholar 

  • Hiller A, Henninger T, Schäfer G, Schmidt CL (2003) New genes encoding subunits of a cytochrome bc1-analogous complex in the respiratory chain of the hyperthermoacidophilic crenarchaeon Sulfolobus acidocaldarius. J Bioenerg Biomembr 35:121–131

    Article  CAS  Google Scholar 

  • Hirner AV, Feldmann I, Krupp E, Grumping R, Goguel R, Cullen WR (1998) Metal(loid) organic, compounds in geothermal gases and waters. Organic Chemistry 29:1765–1778

    CAS  Google Scholar 

  • Hobman J, Wilson JW, Brown N (2000) Microbial mercury reduction. In: DR Lovely (ed) Environmental metal-microbe interaction, Amer Soc Microbiol, Washington, pp 177–197

  • Holden JF, Adams MWW (2003) Microbe–metal interactions in marine hydrothermal environments. Curr Opin Chem Biol 7:160–165

    Article  CAS  Google Scholar 

  • Huber G, Stetter KO (1991) Sulfolobus metallicus, sp. nov., a novel strictly chemolithoautotrophic thermophilic archaeal species of metal-mobilizers. Syst Appl Microbiol 14:372–378

    Article  CAS  Google Scholar 

  • Huber R, Eder W (2006) Aquificales. In: Dworkin M, Falkow S (eds) The prokaryotes, vol 7. Springer, New York, pp 925–938

  • Huber H, Prangishvili D (2006) Sulfolobales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrant E (eds) The prokaryotes. Springer Science, New York, pp 1028–1049

    Google Scholar 

  • Huber G, Spinnler C, Gambacorta A, Stetter K (1989) Metallosphaera sedula gen, and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archaebacteria. Syst Appl Microbiol 12:38–47

    Article  Google Scholar 

  • Huber G, Drobner E, Huber H, Stetter KO (1992) Growth by aerobic oxidation of molecular hydrogen in archaea—a metabolic property so far unknown for this domain. Syst Appl Microbiol 15:502–504

    Article  Google Scholar 

  • Hunter P (2008) A toxic brew we cannot live without. EMBO Reports 9(1):15–18

    Article  CAS  Google Scholar 

  • Hunter WJ, Manter DK (2009) Reduction of selenite to elemental red selenium by Pseudomonas sp. strain CA5. Curr Microbiol 58:493–498

    Article  CAS  Google Scholar 

  • Hynninen A (2010) Zinc, cadmium and lead resistanc mechanism in bacteria and their contribution to biosensing. Dissertation, Department of Food and Environmental Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki

  • Ibrahim ASS, El-Tayeb MA, Elbadawi YB, Al-Salamah AA (2011) Bioreduction of Cr(VI) by potent novel chromate resistant alkaliphilic Bacillis sp. strain KSUCr5 isolated from hypersaline Soda Lakes. African Journal of Biotechnology 10(37):7207–7218

    CAS  Google Scholar 

  • Ip C (2006) Selenium and ER stress response: implication and exploitation for cancer therapy. Proceedings of the International Conference on Selenium in Biology and Medicine, July 2006, pp. 25–30, Universityof Wisconsin-Madison, pp. 63–63

  • Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D, Lloyd JR (2004) Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430:68–71

    Article  CAS  Google Scholar 

  • Ji G, Silver S (1992) Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J Bacteriol 174:3684–3694

    Article  CAS  Google Scholar 

  • Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338:3–14

    Article  CAS  Google Scholar 

  • Jong BC, Kim BH, Chang IS et al (2006) Enrichment, performance, and microbial diversity of a thermophilic mediatorless microbial fuel cell. Environ Sci Technol 40:6449–6454

    Article  CAS  Google Scholar 

  • Joutey NT, Sayel H, Bahafid W, El Ghachtouli N (2015) Mechanism of hexavalent chromium resistance and removal by microorganisms. In: Whitecare DM (ed) Reviews of environmental contamination and toxicology, vol 233. Springer International, Switzerland, pp 45–69

  • Kadukova J, Vircikova E (2005) Comparison of differences between copper bioaccumulation and biosorption. Environ Int 31:227–232

    Article  CAS  Google Scholar 

  • Kafilzadeh F, Moghtsderi Y, Jahromi AR (2013) Isolation and identification of cadmium resistant bacteria in Soltan Abad River sediments and determination of tolerance of bacteria through MIC and MBC. Eur J Exp Biol 3(5):268–273

    Google Scholar 

  • Kambourova M, Mandeva R, Dimova D, Poli A, Nicolaus B, Tommonaro G (2009) Production and characterization of a microbial glucan, synthesized by Geobacillus tepidamans V264 isolated from Bulgarian hot spring. Carbohydrate Polymers 77(2):338–343

    Article  CAS  Google Scholar 

  • Kantar C, Demiray H, Dogan NM (2011) Role of microbial exopolymeric substances (EPS) on chromium sorption and transport in heterogeneous subsurface soil. I. Cr(III) complexation with EPS in aqueous solution. Chemosphere 82:1489–1495

    Article  CAS  Google Scholar 

  • Kao W-C, Huang C-C, Chang J-S (2008) Biosorption of nickel, chromium and zinc by MerP expressing recombinant Escherichia coli. J Hazard Mater 158:100–106

  • Kappler U, Sly LI, McEwan AG (2005) Respiratory gene clusters of Metallosphaera sedula—differential expression and transcriptional organization. Microbiology 151:35–43

    Article  CAS  Google Scholar 

  • Karna RR, Uma L, Subramanian G, Mohan PM (1999) Biosorption of toxic metal ions by alkali-extracted biomass of a marine cyanobacterium, Phormidium valderianum BDU 30501. World J Microbiol Biotechnol 15:729–732

    Article  CAS  Google Scholar 

  • Kashefi K, Lovley DR (2000) Reduction of Fe(III), Mn(IV), and toxic metals at 100°C by Pyrobaculum islandicum. Appl Environ Microbiol 66:1050–1056

    Article  CAS  Google Scholar 

  • Kashefi K, Tor JM, Nevin KP, Lovley DR (2001) Reductive precipitation of gold by dissimilatory Fe(III)-reducing bacteria and archaea. Appl Environ Microbiol 67:3275–3279

    Article  CAS  Google Scholar 

  • Kashefi K, Holmes DE, Reysenbach A-L, Lovley DR (2002a) Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov. Appl Environ Microbiol 68:1735–1742

    Article  CAS  Google Scholar 

  • Kashefi K, Tor JM, Holmes DE, Van G, Praagh CV, Reysenbach AL, Lovley DR (2002b) Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. Int J Syst Evol Microbiol 52:719–728

    CAS  Google Scholar 

  • Kashefi K, Holmes DE, Baross JA, Lovley DR (2003) Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. nov., sp. nov., a novel thermophilic member of the Geobacteraceae from the “Bag City” hydrothermal vent. Appl Environ Microbiol 69:2985–2993

    Article  CAS  Google Scholar 

  • Kaur G, Iqbal M, Bakshi M (2009) Biomineralization of fine selenium crystalline rods and amorphous spheres. J Phys Chem C 113(31):13670–13676

    Article  CAS  Google Scholar 

  • Keasling JD (1997) Regulation of intracellular toxic metals and other cations by hydrolysis of polyphosphate. Ann N Y Acad Sci 829:242–249

    Article  CAS  Google Scholar 

  • Kenne L, Lindberg B (1983) Bacterial polysaccharides. In: Aspinall GO (ed) The polysaccharides, 2nd edn. Academic, New York, pp 287–363

    Chapter  Google Scholar 

  • Kermani AJN, Ghasemi MF, Khosravan A, Farahmand A, Shakibaie MR (2010) Cadmium bioremediation by metal resistant mutated bacterial isolate from active sludge of industrial effluent. Iran J Environ Health Sci Eng 7(4):279–286

    CAS  Google Scholar 

  • Kessi J (2006) Enzymic systems proposed to be involved in the dissimilatory reduction of selenite in the purple non-sulfur bacteria Rhodospirillum rubrum and Rhodobacter capsulatus. Microbiology 152:731–743

    Article  CAS  Google Scholar 

  • Khijniak TV, Slobodkin AI, Coker V, Renshaw JC, Livens FR, Bonch-Osmolovskaya EA, Birkeland N-K, Medvedeva-Lyalikova NN, Lloyd JR (2005) Reduction of uranium (VI) phosphate during growth of the thermophilic bacterium Thermoterrabacterium ferrireducens. Appl Environ Microbiol 71(10):6423–6426

    Article  CAS  Google Scholar 

  • Kieft TL, Fredrickson JK, Onstott TC, Gorby YA, Kostandarithes HM, Bailey TJ, Kennedy DW, Li SW, Plymale AE, Spadoni CM, Gray MS (1999) Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate. Appl Environ Microbiol 65:1214–1221

    CAS  Google Scholar 

  • Kiel JAKW, Boels JM, Beldman G, Venema G (1991) The glgB gene from the thermophile Bacillus caldolyticus encodes a thermolabile branching enzyme. J DNA Seq Map 3:221–232

    Article  Google Scholar 

  • Kiel JAKW, Boels JM, Beldman G, Venema G (1992) Molecular cloning and nucleotide sequence of the glycogen branching enzyme gene (glgB) from Bacillus stearothermophillus and expression in Escherichia coli and Bacillus subtilis. Mol Gen Genet 230:136–144

    Article  Google Scholar 

  • Kim SU, Cheong YH, Seo DC, Hur JS, Heo JS, Cho JS (2007) Characterisation of heavy metal tolerance and biosorption capacity of bacterium strain CPB4 (Bacillus spp.) Water Sci Technol 55:105–111

    Article  CAS  Google Scholar 

  • King SA et al (2006) Mercury in water and biomass of microbial communities in hot springs of Yellowstone National Park, USA. Appl Geochem 21:1868–1879

    Article  CAS  Google Scholar 

  • Klimmek S, Stan HJ, Wilke A, Bunke G, Buchholz R (2001) Comparative analysis of the biosorption of cadmium, lead, nickel, and zinc by algae. Environ Sci Technol 35:4283–4288

    Article  CAS  Google Scholar 

  • Komorowski L, Verheyen W, Schäfer G (2002) The archaeal respiratory supercomplex SoxM from S. acidocaldarius combines features of quinole and cytochrome c oxidases. Biol Chem 383:1791–1799

    Article  CAS  Google Scholar 

  • Konishi Y, Yoshida S, Asai S (1995) Bioleaching of pyrite by acidophilic thermophile Acidianus brierleyi. Biotechnol Bioeng 48(6):592–600

    Article  CAS  Google Scholar 

  • Konishi Y, Nishimura H, Asai S (1998) Bioleaching of sphalerite by the acidophilic thermophile Acidianus brierleyi. Hydrometallurgy 47:339–352

    Article  CAS  Google Scholar 

  • Kornberg RNN, Ault-Riche D (1999) Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem 68:89–125

    Article  CAS  Google Scholar 

  • Kozubal M, Macur RE, Korf S, Taylor WP, Ackerman GG, Nagy A, Inskeep WP (2008) Isolation and distribution of a novel iron-oxidizing crenarchaeon from acidic geothermal springs in Yellowstone National Park. Appl Environ Microbiol 74:942–949

    Article  CAS  Google Scholar 

  • Kozubal MA, Dlakic M, Macur RE, Inskeep WP (2011) Terminal oxidase diversity and function in “Metallosphaera yellowstonensis”: gene expression and protein modeling suggest mechanism of Fe (II) oxidation in the Sulfolobales. Appl Environ Microbiol 77:1844–1853

    Article  CAS  Google Scholar 

  • Kumar R, Acharya C, Joshi SR (2011) Isolation and analyses of uranium tolerant Serratia marcescens strains and their utilization for aerobic uranium U(IV) biosorption. J Microbiol 49(4):568–574

    Article  CAS  Google Scholar 

  • Kwak YH, Lee DS, Kim HB (2003) Vibrio harveyi nitroreductase is also a chromate reductase. Appl Environ Microbiol 69(8):4390–4395

  • Langner HW, Inskeep WP (2000) Microbial reduction of arsenate in the presence of ferrihydrite. Environ Sci Technol 34:3131–3136

    Article  CAS  Google Scholar 

  • Lapaglia C, Hartzell PL (1997) Stress-induced production of biofilm in the hyperthermophile Archaeoglobus fulgidus. Appl Environ Microbiol 63(8):3158–3163

    CAS  Google Scholar 

  • Lata S, Sharma C, Singh AK (2012) Microbial influenced corrosion by thermophilic bacteria. Cent Eur J Eng 2(1):113–122

    CAS  Google Scholar 

  • Lauwerys R, Haufroid V, Hoet P, Lison D (2007) Toxicologie industrielle et intoxications professionnelles, 5th edn. Elsevier-Masson, Paris

    Google Scholar 

  • Leal SS, Gomes CM (2007) Studies of the molten globule state of ferredoxin: structural characterization and implications on protein folding and iron-sulfur center assembly. Proteins 68(3):606–616

    Article  CAS  Google Scholar 

  • Lear G, Song B, Gault AG, Polya DA, Lloyd JR (2007) Molecular analysis of arsenate-reducing bacteria within Cambodian sediments following amendment with acetate. Appl Environ Microbiol 73(4):1041–1048

    Article  CAS  Google Scholar 

  • Lebrun E, Brugna M, Baymann F, Muller D, Lièvremont D, Lett M-C, Nitschke W (2003) Arsenite oxidase, an ancient bioenergetic enzyme. Mol Biol Evol 20:686–693

    Article  CAS  Google Scholar 

  • Lee J, Acar S, Doerr DL, Brierley JA (2011) Comparative bioleaching and mineralogy of composited sulfide ores containing enargite, covellite and chalcocite by mesophilic and thermophilic microorganisms. Hydrometallurgy 105:213–221

    Article  CAS  Google Scholar 

  • Leinfelder W, Forchhammer K, Zinoni F, Sawers G, Mandrand-Berthelot M, Bock A (1988) Escherichia coli genes whose products are involved in selenium metabolism. J Bacteriol 170(2):540–546

    Article  CAS  Google Scholar 

  • Lenart-Boroń A, Boroń P (2014) The effect of industrial heavy metal pollution on microbial abundance and diversity in soils - a review. In: Hernandez-Soriano MC (ed) Environmental risk assessment of soil contamination, InTech, Rijeka, pp 759–783

  • Leonhartsberger S, Huber A, Lottspeich F, Böck A (2001) The hydH/G genes from Escherichia coli code for a zinc and lead responsive two-component regulatory system. J Mol Biol 307:93–105

    Article  CAS  Google Scholar 

  • Lett M-C, Muller D, Lièvremont D, Silver S, Santini J (2012) Unified nomenclature for genes involved in prokaryotic aerobic arsenite oxidation. J Bacteriol 194:207–208

    Article  CAS  Google Scholar 

  • Leung WC, Chua H, Lo WH (2001) Biosorption of heavy metals by bacteria isolated from activated sludge. Appl Biochem Biotechnol 91:171–184

    Article  Google Scholar 

  • Li LV, Zhou J, Zhang C, Cole DR, Gajdarziska-Josifovska M, Phelps TJ (1997) Thermophilic Fe(III)- reducing bacteria from the deep subsurface: the evolutionary implications. Science 277:1106–1109

    Article  Google Scholar 

  • Liu L-J, You X-Y, Guo X, Liu S-J, Jiang C-Y (2011a) Metallosphaera cuprina sp. nov., an acidothermophilic, metal-mobilizing archaeon. Int J Syst Evol Microbiol 61:2395–2400

    Article  CAS  Google Scholar 

  • Liu L-J, You X-Y, Zheng H, Wang S, Jiang C-Y, Liu S-J (2011b) Complete genome sequence of Metallosphaera cuprina, a metal sulfide-oxidizing archaeon from a hot spring. J Bacteriol 193:3387–3388

    Article  CAS  Google Scholar 

  • Lloyd JR, Macaskie LE (2000) Bioremediation of radioactive metals. In: Lovley DR (ed) Environmental microbe–metal interactions, ASM press, Washington DC, pp 277–327

  • Lloyd JR, Chesnes J, Glasauer S, Bunker DJ, Livens FR, Lovley DR (2002) Reduction of actinides and fission products by Fe(III)-reducing bacteria. Geomicrobiol J 19:103–120

    Article  CAS  Google Scholar 

  • Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337:686–690

    Article  CAS  Google Scholar 

  • Losi ME, Amrhein C, Frankenberger WT (1994) Environmental biochemistry of chromium. Rev Environ Contam Toxicol 36:91–121

    Article  Google Scholar 

  • Lovley DR, Phillips EJ (1992) Reduction of uranium by Desulfovibrio desulfuricans. Appl Environ Microbiol 58(3):850–856

    CAS  Google Scholar 

  • Lübben M, Kolmerer B, Saraste M (1992) An archaebacterial terminal oxidase combines core structures of two mitochondrial respiratory complexes. EMBO J 11:805–812

    Google Scholar 

  • Lubben M, Arnaud S, Castresana J, Warne A, Albracht SP, Saraste MA (1994a) Second terminal oxidase in Sulfolobus acidocaldarius. Eur J Biochem 224:151–159

  • Lubben M, Warne A, Albracht SP, Saraste M (1994b) The purified SoxABCD quinol oxidase complex of Sulfolobus acidocaldarius contains a novel haem. Mol Microbiol 13:327–335

  • Maezato Y, Blum P (2012) Survival of the fittest: overcoming oxidative stress at the extremes of acid, heat and metal. Life 2:229–242

    Article  CAS  Google Scholar 

  • Mancuso Nichols C, Lardière SG, Bowman JP, Nichols PD, Gibson JAE, Guézennec J (2005) Chemical characterization of exopolysaccharides from Antarctic marine bacteria. Microb Ecol 49:578–589

    Article  CAS  Google Scholar 

  • Mandal AK, Cheung WD, Argüellos JM (2002) Characterization of a thermophilic P-type Ag+/Cu+-ATPase from the extremophile Archeoglobus fulgidus. J Biol Chem 277(9):7201–7208

    Article  CAS  Google Scholar 

  • Mapoleto M, Torto N, Prior B (2005) Evaluation of yeast strains as possible agents for trace enrichment of metal ions in aquatic environments. Talanta 65:930–937

    Article  CAS  Google Scholar 

  • Marshall CW, May HD (2009) Electrochemical evidence of direct electrode reduction by a thermophilic Gram-positive bacterium, Thermincola ferriacetica. Energy Environ Sci 2:699–705

    Article  CAS  Google Scholar 

  • Mathis B, Marshall C, Milliken C et al (2008) Electricity generation by thermophilic microorganisms from marine sediment. Appl Microbiol Biot 78:147–155

    Article  CAS  Google Scholar 

  • McLean J, Beveridge TJ (2001) Chromate reduction by a pseudomonad isolated from a site contaminated with chromate copper arsenate. Appl Environ Microbiol 67:1076–1084

    Article  CAS  Google Scholar 

  • Mikael Sehlin HBLE (1992) Oxidation and reduction of arsenic by Sulfolobus acidocaldarius strain BC. FEMS Microbiol Lett 93:87–92

  • Miller KW, Risanico SS, Risatti JB (1992) Differential tolerance of Sulfolobus strains to transition-metals. FEMS Microbiol Lett 93:69–73

    Article  CAS  Google Scholar 

  • Miroshnichenko ML, Slobodkin AI, Kostrikina NA, L’Haridon S, Nercessian O, Spring S, Stackebrandt E, Bonch-Osmolovskaya EA, Jeanthon C (2003) Deferribacter abyssi sp. nov., an anaerobic thermophile from deep-sea hydrothermal vents of the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 53:1637–1641

    Article  CAS  Google Scholar 

  • Møller AK, Barkay T, Al-Soud WA et al (2010) Diversity and characterization of mercury-resistant bacteria in snow, freshwater and sea-ice brine from the High Arctic. FEMS Microbiol Ecol 75(2011):390–401

    Google Scholar 

  • Morin I, Cuillel M, Lowe J, Crouzy S, Guillain F, Mintz E (2005) Cd2+- or Hg2+-binding proteins can replace the Cu+-chaperone Atx1 in delivering Cu+ to the secretory pathway in yeast. FEBS Lett 579:1117–1123

    Article  CAS  Google Scholar 

  • Mukherjee A, Wheaton GH, Blum PH, Kelly RM (2012) Uranium extremophily is an adaptive, rather than intrinsic, feature for extremely thermoacidophilic Metallosphaera species. Proc Natl Acad Sci USA 109:16702–16707

    Article  CAS  Google Scholar 

  • Muller D, Lievremont D, Simeonova DD, Hubert J-C, Lett M-C (2003) Arsenite oxidase (aox) genes from a metal-resistant β-proteobacterium. J Bacteriol 185:135–141

    Article  CAS  Google Scholar 

  • Narasingarao P, Haggblom MM (2007) Identification of anaerobic selenate respiring bacteria from aquatic sediments. Appl Environ Microbiol 73:3519–3527

  • Nealson KH, Cox BL (2002) Microbial metal-ion reduction and Mars extraterrestrial expectations? Curr Opin Microbiol 5:296–300

    Article  CAS  Google Scholar 

  • Nemergut DR, Martin AP, Schmidt SK (2004) Integron diversity in heavy-metal-contaminated mine tailings and inferences about integron evolution. Appl Environ Microbiol 70:1160–1168

    Article  CAS  Google Scholar 

  • Nicolaus B, Manca MC, Romano I, Lama L (1993) Production of an exopolysaccharide from two thermophilic archaea belonging to the genus Sulfolobus. FEMS Microbiol Lett 109(2–3):203–206

    Article  CAS  Google Scholar 

  • Nies DH (1992) CzcR and CzcD, gene products affecting rregulation of resistance to cobalt, zinc and cadmium (czc system) in Alcaligens eutrophous. J Bacteriol 174:8102–8110

    Article  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance im prokaryotes. FEMS Microbiol Rev 27(2003):313–339

    Article  CAS  Google Scholar 

  • Nies D, Silver S (2007) Molecular microbiology of heavy metals. Springer, Berlin

    Book  Google Scholar 

  • Noll M, Petrukhin K, Lutsenko S (1998) Identification of a novel transcription regulator from Proteus mirabilis, PMTR, revealed a possible role of YJAI protein in balancing zinc in Escherichia coli. J Biol Chem 273:21393–21401

    Article  CAS  Google Scholar 

  • Norris PR (2007) Acidophile diversity in mineral sulfide oxidation. In: Rawlings D, Johnson DB (eds) Biomining, Springer, Berlin, pp 199–216

  • Norris PR, Clark DA, Owen JP, Waterhouse S (1996) Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria. Microbiology 142:775–783

    Article  CAS  Google Scholar 

  • Norris PR, Burton NP, Foulis NAM (2000) Acidophiles in bioreactor mineral processing. Extremophiles 4:71–76

    Article  CAS  Google Scholar 

  • Ohtake H, Silver S (1994) Bacterial detoxification of toxic chromate. In: Choudhuri GR (ed) Biological degradation and bioremediation of toxic chemicals, Discorides, Portland, pp 403–415

  • Okibe N, Koga M, Sasaki K, Hirajima T, Heguri S, Asano S (2013) Simultaneous oxidation and immobilization of arsenite from refinery waste water by thermoacidophilic iron-oxidizing archaeon, Acidianus brierleyi. Miner Eng 48:126–134

    Article  CAS  Google Scholar 

  • Olafson RW, McCubbin WD, Kay CM (1988) Primary- and secondary-structural analysis of a unique prokaryotic metallothionein from a Synechococcus sp. cyanobacterium. Biochem J 251:691–699

    Article  CAS  Google Scholar 

  • Opperman DJ, van Heerden E (2008) A membrane-associated protein with Cr(VI)-reducing activity from Thermus scotoductus SA-01. FEMS Microbiol Lett 280(2):210–218

    Article  CAS  Google Scholar 

  • Oremland RS, Stolz JF (2005) Arsenic, microbes and contaminated aquifers. Trends Microbiol 13:45–49

    Article  CAS  Google Scholar 

  • Oremland R, Herbel M, Blum J, Langley S, Beveridge T, Jayan P, Sutto T, Ellis A, Curran S (2004) Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl Environ Microbiol 70(1):52–60

    Article  CAS  Google Scholar 

  • Özdemir S, Kılınc E, Poli A, Nicolus B, Gűven K (2011) Cd, Cu, Ni, Mn and Zn resitance and bioaccumulation by thermophilic bacteria, Geobacillus toebii subsp. decanicus and Geobacillus thermoleovorans subsp. stromboliensis. World J Microbiol Biotechnol 28(1):155–163

  • Özdemir S, Kılınc E, Poli A, Nicolus B (2013) Biosorption of heavy metals (Cd2+, Cu2+, Co2+, and Mn2+) by thermophilic bacteria Gebacillus therantarcticus and Anoxybacillus amylolyticus: equilibrium and kinetics. Biorem J 17(2):86–96

    Article  CAS  Google Scholar 

  • Özturk A (2007) Removal of nickel from aqueous solution by the bacterium Bacillus thuringiensis. J Hazard Mater 147:518–523

    Article  CAS  Google Scholar 

  • Pal A, Paul AK (2004) Aerobic chromate reduction by chromium resistant bacteria isolated from serpentine soil. Microbiol Res 159:347–354

  • Pal A, Dutta S, Paul AK (2005) Reduction of hexavalent chromium by cell-free extract of Bacillus sphaericus AND 303 isolated from serpentine soil. Curr Microbiol 66:327–330

    Article  CAS  Google Scholar 

  • Pant D, Van Bogaert G, Diels L et al (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technol 101:1533–1543

    Article  CAS  Google Scholar 

  • Pardo R, Herguedas M, Barrado E, Vega M (2003) Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida. Anal Bioanal Chem 376:26–32

    Article  CAS  Google Scholar 

  • Patra RC, Malik B, Beer M, Megharaj M, Naidu R (2010) Molecular characterization of chromium (VI) reducing potential in gram positive bacteria isolated from contaminated sites. Soil Biol Biochem 42(10):1857–1863

  • Pattanapipitpaisal P, Reakyai T (2013) Cr (VI) reduction by cell-free extract of thermophilic Bacillus fusiformis NTR 9. Songklanakarin J Sci Technol 35(4):407–414

    Google Scholar 

  • Paulsen IT, Park JH, Choi PS, Saier MHJ (1997) A family of gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from gram-negative bacteria. FEMS Microbiol Lett 156:1–8

    Article  CAS  Google Scholar 

  • Peltier E, Vincent J, Finn C, Graham DW (2010) Zinc-induced antibiotic resistance in activated sludge bioreactors. Water Res 4:3829–3836

    Article  CAS  Google Scholar 

  • Peng D, Zhang J, Liu Q, Taylor E (2007) Size effect of elemental selenium nanoparticles (nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity. J Inorg Biochem 101(10):1457–1463

    Article  CAS  Google Scholar 

  • Pepi M, Gaggi C, Bernardini E et al (2010) Mercury-resistant bacterial strains Pseudomonas and Psychrobacter spp. isolated from sediments of Orbetello Lagoon (Italy) and their possible use in bioremediation processes. Int Biodeterior Biodegrad 65(2011):85–91

    Google Scholar 

  • Pereira MM, Bandeiras TM, Fernandes AS, Lemos RS, Melo AM, Teixeira M (2004) Respiratory chains from aerobic thermophilic prokaryotes. J Bioenerg Biomembr 36:93–105

    Article  CAS  Google Scholar 

  • Perry JJ, Perman JA, Zaworotko MJ (2009) Design and synthesis of metal-organic frameworks using metal-organic polyhedral as supermolecular building blocks. Chem Soc Rev 38(5):1400–1417

    Article  CAS  Google Scholar 

  • Pinto G, Albertano P, Ciniglia C, Cozzolino S, Pollio A, Yoon H, Bhattacharya D (2003) Comparative approaches to the taxonomy of the genus Galdieria merola (Cyanidiales, Rhodophyta). Cryptogam Algol 24:13–32

    Google Scholar 

  • Pirela MLR, Suárez WAB, Vargas MMB (2014) Antibiotic- and heavy-metal resistance in bacteria isolated from deep subsurface in El Callao region, Venezuela Revista Colombiana de Biotecnología XVI(2):141–149

  • Pitluck S, Sikorski J, Zeytun A et al (2011) Complete genome sequence of Calditerrivibrio nitroreducens type strain (Yu37-1T). Stand Genomic Sci 4:54–62

    Article  CAS  Google Scholar 

  • Plum LM, Rink L, Haase H (2010) The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7(4):1342–1365

    Article  CAS  Google Scholar 

  • Plumb JJ, Haddad CM, Gibson JAE, Franzmann PD (2007) Acidianus sulfidivorans sp. nov., an extremely acidophilic, thermophilic archaeon isolated from a solfatara on Lihir Island, Papua New Guinea, and emendation of the genus description. Int J Syst Evol Microbiol 57:1418–1423

    Article  Google Scholar 

  • Pol A, Barends TRM, Diet A, Khadem AF, Eygensteyn J, Jetten MSM, Op den Camp HJM (2014) Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ Microbiol 16:255–264

    Article  CAS  Google Scholar 

  • Poli A, Salerno A, Laezza G, Di Donato P, Dumontet S, Nicolous B (2008) Heavy metal resistance of some thermophiles: potential use of α-amylase from Anoxybacillus amylolyticus as a microbial enzymatic bioassay. Res Microbiol 160(2009):99–106

    Google Scholar 

  • Purschke WG, Schmidt CL, Petersen A, Schäfer G (1997) The terminal quinol oxidase of the hyperthermophilic archaeon Acidianus ambivalens exhibits a novel subunit structure and gene organization. J Bacteriol 179:1344–1353

    Article  CAS  Google Scholar 

  • Quemeneur M, Heinrich-Salmeron A, Muller D, Lievremont D, Jauzein M, Bertin PN, Garrido F, Joulian C (2008) Diversity surveys and evolutionary relationships of aoxB genes in aerobic arsenite oxidizing bacteria. Appl Environ Microbiol 74(14):4567–4573

    Article  CAS  Google Scholar 

  • Rabaey K, Rozendal RA (2010) Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat Rev Microbiol 8:706–716

    Article  CAS  Google Scholar 

  • Ramirez-Diaz MI, Díaz-Pérez C, Vargas E, Riveros-Rosas H, Campos-García J, Cervantes C (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21:321–332

    Article  CAS  Google Scholar 

  • Rawlings DE (1997) Biomining: theory, microbes and industrial processes. Springer, Berlin

    Book  Google Scholar 

  • Rawlings DE (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56:65–91

    Article  CAS  Google Scholar 

  • Remonsellez F, Orell A, Jerez CA (2006) Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: possible role of polyphosphate metabolism. Microbiology 152:59–66

    Article  CAS  Google Scholar 

  • Richey C, Chovanec P, Hoeft SE, Oremland RS, Basu P, Stolz JF (2009) Respiratory arsenate reductase as a bidirectional enzyme. Biochem Biophys Res Commun 382:298–302

    Article  CAS  Google Scholar 

  • Rinker KD, Kelly RM (1996) Growth physiology of the hyperthermophilic archaeon Thermococcus litoralis: development of a sulfur-free defined medium, characterization of an exopolysaccharide, and evidence of biofilm formation. Appl Environ Microbiol 62(12):4478–4485

    CAS  Google Scholar 

  • Roh Y, Liu SV, Li G, Huang H, Phelps TJ, Zhou J (2002) Isolation and characterization of metal-reducing Thermoanaerobacter strains from deep subsurface environments of the Piceance Basin, Colorado. Appl Environ Microbiol 68:6013–6020

    Article  CAS  Google Scholar 

  • Rosen BP (1999) The role of efflux in bacterial resistance to soft metals and metalloids. Essays Biochem 34:1–15

    Article  CAS  Google Scholar 

  • Rosen BP (2002a) Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes. Comp Biochem Physiol A 133:689–693

    Article  Google Scholar 

  • Rosen B (2002b) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92

    Article  CAS  Google Scholar 

  • Rosen BP, Bhattacharjee H, Zhou TQ, Walmsely AR (1999) Mechanism of the ArsA-ATPase. Biochim Biophys Acta 1461:207–215

    Article  CAS  Google Scholar 

  • Rosenstein R, Peschel A, Wieland B, Götz F (1992) Expression and regulation of the antimonite, arsenite, and arsenate resistance operon of Staphylococcus xylosus plasmid pSX267. J Bacteriol 174:676–683

    Article  Google Scholar 

  • Rossy E et al (2004) Is the cytoplasmic loop of MerT, the mercuric ion ransport protein, involved in mercury transfer to the mercuric reductase? FEBS Lett 575:86–90

    Article  CAS  Google Scholar 

  • Russell AJ, Berberich JA, Drevon GF, Koepsel RR (2003) Biomaterials for mediation of chemical and biological warfare agents. Annu Rev Biomed Eng 5:e27

  • Saltikov CW, Newman DK (2003) Genetic identification of a respiratory arsenate reductase. Proc Natl Acad Sci USA 100:10983–10988

    Article  CAS  Google Scholar 

  • Santini JM, vanden Hoven RN (2004) Molybdenum-containing arsenite oxidase of the chemolithoautotrophic arsenite oxidizer NT-26. J Bacteriol 186:1614–1619

    Article  CAS  Google Scholar 

  • Sar P, Kazy S, Paul B, Sarkar A (2013) Metal bioremediation by thermophilic microorganisms. In: Satyanarayan T (ed) Thermophilic microbes in environment and industrial biotechnology: biotechnology of thermophiles, Springer Science, Berlin

  • Sarangi A, Krishnan C (2008) Comparison of in vitro Cr (VI) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil. Bioresour Technol 99:4130–4137

  • Sau GB, Chatterjee S, Sinha S, Mukherjee SK (2008) Isolation and characterization of a Cr(VI) reducing Bacillus firmus strain from industrial effluents. Polish J Microbiol 57:327–332

    CAS  Google Scholar 

  • Schäfer G, Engelhard M, Müller V (1999) Bioenergetics of the Archaea. Microbiol Mol Biol Rev 63:570–620

    Google Scholar 

  • Schelert J, Dixit V, Hoang V, Simbahan J, Drozda M, Blum P (2004) Occurrence and characterization of mercury resistance in the hyperthermophilic archaeon Sulfolobus solfataricus by use of gene disruption. J Bacteriol 186:427–437

    Article  CAS  Google Scholar 

  • Schelert J, Drozda M, Dixit V, Dillman A, Blum P (2006) Regulation of mercury resistance in the crenarchaeote Sulfolobus solfataricus. J Bacteriol 188:7141–7150

    Article  CAS  Google Scholar 

  • Scherer J, Nies DH (2009) CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34. Mol Microbiol 73:601–621

    Article  CAS  Google Scholar 

  • Schippers A (2007) Microorganisms involved in bioleaching and nucleic acid-based molecular methods for their identification and quantification. In: Donati ER, Sand W (eds) Microbial processing of metal sulfides. Springer, Dordrecht, The Netherlands, pp 3–33

    Chapter  Google Scholar 

  • Schippers A, Hedrich S, Vasters J, Drobe M, Sand W, Willscher S (2013) Biomining: metal recovery from ores with microorganisms. Adv Biochem Eng Biotechnol 141:1–47

    Google Scholar 

  • Schmidt CL (2004) Rieske iron-sulfur proteins from extremophilic organisms. J Bioenerg Biomembr 36:107–113

    Article  CAS  Google Scholar 

  • Schoepp-Cothenet B, Schütz M, Baymann F, Brugna M, Nitschke W, Myllykallio H, Schmidt C (2001) The membrane-extrinsic domain of cytochrome b558/566 from the Archaeon Sulfolobus acidocaldarius performs pivoting movements with respect to the membrane surface. FEBS Lett 487:372–376

    Article  CAS  Google Scholar 

  • Schroeder I, Johnson E, de Vries S (2003) Microbial ferric iron reductases. FEMS Microbiol Rev 27:427–447

    Article  CAS  Google Scholar 

  • Schuler D, Frankel RB (1999) Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications. Appl Microbiol Biotechnol 52:464–473

    Article  CAS  Google Scholar 

  • Segerer A, Neuner A, Kristjansson JK, Stetter KO (1986) Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int J Syst Bacteriol 36:559–564

  • Sehlin HM, Lindstrom EB (1992) Oxidation and reduction of arsenic by Sulfolobus acidocaldarius strain BC. FEMS Microbiol Lett 93:87–92

    Article  CAS  Google Scholar 

  • Seiler C, Berendonk T (2012) Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front Microbiol 3:399

    Article  Google Scholar 

  • Seufferheld MJ, Alvarez HM, Farias ME (2008) Role of polyphosphates in microbial adaptation to extreme environments. Appl Environ Microbiol 74:5867–5874

    Article  CAS  Google Scholar 

  • Shakoori AR, Tahseen S, Haq RU (1999) Chromium tolerant bacteria isolated from industrial effluents and their use in detoxification of hexavalent chromium. Folia Microbiol 44:50–54

    Article  CAS  Google Scholar 

  • Sharma A, Jani K, Souche YS, Pandey A (2014) Microbial diversity of the Soldhar hot spring, India, assessed by analyzing 16S rRNA and protein-coding genes. Ann Microbiol. https://doi.org/10.1007/s13213-014-0970-4

  • She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CC, Clausen IG, Curtis BA, de Moors A et al (2001) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci USA 98:7835–7840

    Article  CAS  Google Scholar 

  • Shelake RM, Hayashi H, Morita H (2016) Structural analysis and homology modeling of members of smt-like operon from thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. J Proteins Proteomics 7(3):221–230

    Google Scholar 

  • Siddiquee S, Rovina K, Azad SA, Naher L, Suryani S et al (2015) Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: a review. J Microb Biochem Technol 7:384–393

  • Silver S (1998) Genes for all metals—a bacterial view of the periodic table. The 1996 Thom Award Lecture. J Ind Microbiol Biotechnol 20:1–12

    Article  CAS  Google Scholar 

  • Silver S, Phung LT (1996) Bacterial heavy metal resistances: new surprises. Annu Rev Microbiol 50:753–789

    Article  CAS  Google Scholar 

  • Silver S, le Phung T (2005) A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 32:587–605

    Article  CAS  Google Scholar 

  • Simbahan J et al (2005) Community analysis of a mercury hot spring supports occurrence of domain-specific forms of mercuric reductase. Appl Environ Microbiol 71:8836–8845

    Article  CAS  Google Scholar 

  • Slobodkin AI (2005) Thermophilic microbial metal reduction. Microbiology 74(5):581–595

    Article  CAS  Google Scholar 

  • Slobodkin AI, Reysenbach A-L, Strutz N, Dreier M, Wiegel J (1997) Thermoterrabacterium ferrireducens gen. nov., sp., nov. a thermophilic anaerobic, dissimilatory Fe(III)-reducing bacterium from a continental hot spring. Int J Syst Bacteriol 47:541–547

    Article  CAS  Google Scholar 

  • Slobodkin A, Jeanthon C, L’Haridon S, Nazina T, Miroshnichenko M, Bonch-Osmolovskaya E (1999a) Dissimilatory reduction of Fe(III) by thermophilic bacteria and archaea in deep subsurface petroleum reservoirs of Western Siberia. Curr Microbiol 39:99–102

    Article  CAS  Google Scholar 

  • Slobodkin A, Tourova TP, Kuznetsov BB, Kostrikina NA, Chernyh NA, Bonch-Osmolovskaya EA (1999b) Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe(III)-reducing anaerobic thermophilic bacterium. Int J Syst Bacteriol 49:1471–1478

    Article  Google Scholar 

  • Slobodkin A et al (2001) Evidence for the presence of thermophilic Fe(III)-reducing microorganisms in a deep-sea hydrothermal vents at 13°N (East Pacific Rise). FEMS Microbiol Ecol 36(2–3):235–243

    CAS  Google Scholar 

  • Slobodkin AI, Chistyakova NI, Rusakov VS (2004) High-temperature microbial sulfate reduction can be accompanied by magnetite formation. Mikrobiologiya 73:553–557

    CAS  Google Scholar 

  • Sobol Z, Schiestl RH (2012) Intracellular and extracellular factors influencing Cr(VI) and Cr(III) genotoxicity. Environ Mol Mutagen 53:94–100

  • Sokolova TG, Gonzalez JM, Kostrikina NA, Chernyh NA, Slepova TV, Bonch-Osmolovskaya EA, Robb FT (2004) Thermosinus carboxydivorans gen. nov., sp. nov., a new anaerobic thermophilic carbon monoxide oxidizing hydrogenogenic bacterium from a hot pool of Yellowstone National Park. Int J Syst Evol Microbiol 54:2353–2359

    Article  CAS  Google Scholar 

  • Spada S, Pembroke JT, Gerard Wall J (2002) Isolation of a novel Thermus thermophilus metal efflux protein that improves Escherichia coli growth under stress conditions. Extremophiles 6:301–308

    Article  CAS  Google Scholar 

  • Spain A (2003) Implications of microbial heavy metal tolerance in the environment. Rev Undergrad Res 2:1–6

    Google Scholar 

  • Srivastava P, Kowshik M (2013) Mechanisms of metal resistance and homeostasis in Haloarchea. Archaea Article ID 732864:1–16

  • Stepanauskas R, Glenn TC, Jagoe CH, Tuckfield RC, Lindell AH, King CJ, McArthur JV (2006) Co-selection for microbial resistance to metals and antibiotics in freshwater microcosms. Environ Microbiol 8:1510–1514

    Article  CAS  Google Scholar 

  • Stetter KO (1996) Hyperthermophilic procaryotes. FEMS Microbiol Rev 18:149–158

    Article  CAS  Google Scholar 

  • Stolz JF, Basu P, Santini JM, Ronald OS (2006) Arsenic and selenium in microbial metabolism. Ann Rev Microbiol 60:107–130

  • Summers A (2002) Generally overlooked fundamentals of bacterial genetics and ecology. Clinical Infectious Diseases 34:s84–s92

    Article  Google Scholar 

  • Sutherland IW (1983) Extracellular polysaccharides. In: Rehm HJ, Reed G (eds) Biotechnology: biomass, microorganisms for special applications, microbial products I, energy from renewable resources, Chemie, Wienheim, pp 531–574

  • Takai K, Kobayashi H, Nealson KH, Horikoshi K (2003a) Deferribacter desulfuricans sp. nov., a novel sulfur-, nitrate- and arsenate-reducing thermophile isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:839–846

    Article  CAS  Google Scholar 

  • Takai K, Kobayashi H, Nealson KH, Horikoshi K (2003b) Sulfurihydrogenibium subterraneum gen. nov., sp. nov., from a subsurface hot aquifer. Int J Syst Evol Microbiol 53:823–827

    Article  CAS  Google Scholar 

  • Takayanagi S, Kawasaki H, Sugimori K, Yamada T, Sugai A, Ito T, Yamasato K, Shioda M (1996) Sulfolobus hakonensis sp. nov., a novel species of acidothermophilic archaeon. Int J Syst Evol Microbiol 46:377–382

    CAS  Google Scholar 

  • Tanaka Y, Tsumoto K, Nakanishi T, Yasutake Y, Sakai N, Yao M, Tanaka I, Kumagai I (2004) Structural implications for heavy metal-induced reversible assembly and aggregation of a protein: the case of Pyrococcus horikoshii CutA. FEBS Lett 556:167–174

    Article  CAS  Google Scholar 

  • Tanaka M, Okamura Y, Arakaki A, Tanaka T, Takeyama H, Matsunaga T (2006) Origin of magnetosome membrane: proteomic analysis of magnetosome membrane and comparison with cytoplasmic membrane. Proteomics 6(19):5234–5247

    Article  CAS  Google Scholar 

  • Tang K, Barry K, Chertkov O, Dalin E, Han CS, Hauser LJ et al (2011) Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus. BMC Genomics 12:334

  • Tejo P, Sharma N, Prakash R, Raina K, Fellowes J, Pearce C, Lloyd J, Pattrick R (2009) Aerobic microbial manufacture of nanoscale selenium: exploiting nature’s bio-nanomineralization potential. Biotechnol Lett 31(12):1857–1862

    Article  CAS  Google Scholar 

  • Telmer K, Veiga MM (2009) World emissions of mercury from artisanal and small scale gold mining. In: Pirrone N, Mason R (eds) Mercury fate and transport in the global atmosphere: emissions, measurements and models, Springer Science + Business Media, New York, pp 131–172

  • Ter Heijne A, Liu F, Weijden R et al (2010) Copper recovery combined with electricity production in amicrobial fuel cell. Environ Sci Technol 44:4376–4381

    Article  CAS  Google Scholar 

  • Thacker U, Parikh R, Shouche Y, Madamwar D (2007) Reduction of chromate by cell-free extract of Brucella sp. isolated from Cr(VI) contaminated sites. Bioresour Technol 98:1541–1547

  • Thatoi H, Das S, Miishra J, Rath BP, Das N (2014) Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. J Environ Manag 146:383–399

  • Tomova I, Disheva-Stoilova M, Tonkova-Vaileva E (2014) Characterization of heavy metals resistant heterotrophic bacteria from soils in the Windmill Islands region, Wilkes Land, East Antarctica. Polish Polar Res 35(4):593–607

    Article  Google Scholar 

  • Toress-Sanchez R, Magana-Vazuez A, Sanchez-Yanez JM (1997) High temperature microbial corrosion in the condenser of a geothermal electric power unit. Mater Perform 36:43–46

    Google Scholar 

  • Tottey S, Harvie DR, Robinson NJ (2005) Understanding how cells allocate metals using metal sensors and metallochaperones. Acc Chem Res 38:775–783

    Article  CAS  Google Scholar 

  • Tourney J, Ngwenya BT, Mosselmans JWF, Magennis M (2009) Physical and chemical effects of extracellular polymers (EPS) on Zn adsorption to Bacillus licheniformis S-86. J Colloid Interf Sci 337:381–389

    Article  CAS  Google Scholar 

  • Turner JS, Morby AP, Whitton BA, Gupta A, Robinson NJ (1993) Construction of Zn2+/Cd2+ hypersensitive cyanobacterial mutants lacking a functional metallothionein locus. J Biol Chem 268:4494–4498

    CAS  Google Scholar 

  • Turner RJ, Weiner JH, Taylor DE (1998) Selenium metabolism in Escherichia coli. Biometals 11:223–227

    Article  CAS  Google Scholar 

  • Tuzen M, Saygi KO, Usta C, Soylak M (2008) Pseudomonas aeruginosa immobilized multiwalled carbon nanotubes as biosorbent for heavy metal ions. Bioresour Technol 99:1563–1570

    Article  CAS  Google Scholar 

  • Uemori T, Ishino Y, Toh H, Asada K, Kato I (1993) Organization and nucleotide sequence of the DNA polymerase gene from the archaeon Pyrococcus furiosus. Nucleic Acids Res 21:259–265

  • Umrania VV (2005) Bioremediation of toxic heavy metals using acidothermophilic autotrophes. Bioresour Technol 97(2006):1237–1242

  • Vadas A, Monbouquette HG, Johnson E, Schroeder I (1999) Identification and characterization of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus. J Biol Chem 274:36715–36721

    Article  CAS  Google Scholar 

  • Vagras M, Kasheff K, Blunt-Harris E, Lovley D (1998) Microbiological evidence for Fe(III) reduction on early Earth. Nature 395:65–67

    Article  Google Scholar 

  • Valls M, de Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:328–338

    Article  Google Scholar 

  • van der Maas P, van de Sandt T, Klapwijk B, Lens P (2003) Biological reduction of nitric oxide in aqueous Fe(II) EDTA solutions. Biotechnol Prog 19:323–1328

    Google Scholar 

  • van der Merwe JA, Deane SM, Rawlings DE (2010) The chromosomal arsenic resistance genes of Sulfobacillus thermosulfidooxidans. Hydrometallurgy 104:477–482

  • Van Lis R, Nitschke W, Duval S, Schoepp-Cothenet B (2013) Arsenics as bioenergetic substrates. Biochim Biophys Acta 1827:176–188

    Article  CAS  Google Scholar 

  • vanden Hoven RN, Santini JM (2004) Arsenite oxidation by the heterotrophy Hydrogenophaga sp. str. NT-14: the arsenite oxidase and its physiological electron acceptor. Biochim Biophys Acta 1656:148–155

    Article  CAS  Google Scholar 

  • Vartanyan NS, Karavaiko GI, Pivovarova TA, Dorofeev AG (1990) Resistance of Sulfobacillus thermosulfidooxidans subspecies asporogenes to Cu2+, Zn2+ and Ni2+ ions. Microbiology (English translation of Mikrobiologiya) 59:399–404

    Google Scholar 

  • Vera M, Schippers A, Sand W (2013) Progress in bioleaching: fundamentals and mechanism of bacterial metal sulphide oxidation—part A. Appl Microbiol Biotechnol 97:7529–7541

  • Vetriani C, Chew YS, Miller SM, Yagi J, Coombs J, Lutz RA, Barkay T (2005) Mercury adaptation among bacteria from a deep sea hydrothermal vent. Appl Environ Microbiol 71(1):220–226

    Article  CAS  Google Scholar 

  • Volesky B (2003) Sorption and biosorption. BV Sorbex, Inc., Montreal-St. Lambert

    Google Scholar 

  • von Hoek AHAM, Mevius D, Guerra B, Mullany P, Roberts AP, JMH A (2011) Acquired antibiotic resistance genes: an overview. Front Microbiol 2:203

    Google Scholar 

  • Wang H, Zhang J, Yu H (2007) Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic Biol Med 42(10):1524–1533

    Article  CAS  Google Scholar 

  • Wang Y, Freedman Z, Lu-Irving P, Kaletsky R, Barkay T (2009) An initial characterization of the mercury resistance (mer) system of the thermophilic bacterium Thermus thermophilus HB27. FEMS Microbiol Ecol 67:118–129

    Article  CAS  Google Scholar 

  • Wang Y et al (2011) Environmental conditions constrain the distributionand diversity of archaeal merA in Yellowstone National Park, Wyoming, USA. Microb Ecol 62:739–752

    Article  CAS  Google Scholar 

  • Watkin ELJ, Keeling SE, Perrot FA, Shiers DW, Palmer ML, Watling HR (2009) Metals tolerance in moderately thermophilic isolates from a spent copper sulfide heap, closely related to Acidithiobacillus caldus, Acidimicrobium ferrooxidans and Sulfobacillus thermosulfidooxidans. J Ind Microbiol Biotechnol 36:461–465

    Article  CAS  Google Scholar 

  • Wheaton G, Counts J, Mukherjee A, Kruh J, Kelly R (2015) The confluence of heavy metal biooxidation and heavy metal resistance: Implications for bioleaching by extreme thermoacidophiles. Minerals 5:397–451

    Article  Google Scholar 

  • Wright MH, Patel BKC, Greens AC (2012) Thermophilic bacteria from Paralana hot springs in thr Northern Flinders ranges of South Australia. Conference paper. 10.13140/RG.2.1.2765.5525

  • Wrighton KC, Agbo P, Warnecke F et al (2008) A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME J 2:1146–1156

    Article  CAS  Google Scholar 

  • Wrighton KC, Thrash JC, Melnyk RA, Bigi JP, Byrne-Bailey KG, Remis JP, Schichnes D, Auer M, Chang CJ, Coates JD (2011) Evidence for direct electron transfer by a gram-positive bacterium isolated from a microbial fuel cell. Appl Environ Microbiol 77(21):7633–7639

    Article  CAS  Google Scholar 

  • Wuertz S, Muller E, Spaeth R, Pfleiderer P, Flemming H-C (2000) Detection of heavy metals in bacterial biofilms and microbial floes with the fluorescent complexing agent Newport Green. J Ind Microbiol Biotechnol 24:116–123

    Article  CAS  Google Scholar 

  • Xiang X, Dong X, Huang L (2003) Sulfolobus tengchongensis sp. nov., a novel thermoacidophilic archaeon isolated from a hot spring in Tengchong, China. Extremophiles 7:493–498

    Article  CAS  Google Scholar 

  • Xu XR, Li HB, Gu JD (2004) Reduction of hexavalent chromium by ascorbic acid in aqueous solutions. Chemosphere 57:609–613

    Article  CAS  Google Scholar 

  • Xu XR, Li HB, Gu JD, Li XY (2005) Kinetics of the reduction of chromium (VI) by vitamin C. Environ Toxicol Chem 24:1310–1314

    Article  CAS  Google Scholar 

  • Yadav V, Sharma N, Prakash R, Raina K, Bharadwaj L, Tejo P (2008) Generation of selenium containing nano-structures by soil bacterium, Pseudomonas aeruginosa. Biotechnol 7(2):299–304

    Article  CAS  Google Scholar 

  • Yamamura S, Amachi S (2014) Microbiology of inorganic arsenic: from metabolism to bioremediation. Journal of Bioscience and Bioengineering 118(1):1–9

    Article  CAS  Google Scholar 

  • Yang J, Li Q, Yang H, Yan L, Yang L, Yu L (2008) Overexpression of human CUTA isoform 2 enhances the cytotoxicity of copper to HeLa cells. Acta Biochim Pol 55:411–415

    CAS  Google Scholar 

  • Yang J, He M, Wang G (2009) Removal of toxic chromate using free and immobilized Cr(VI) reducing bacterial cells of Intrasporangium sp Q5-1. World J Microbiol Biotechnol 25(9):1579–1587

    Article  CAS  Google Scholar 

  • Yee N, Fein J (2001) Cd adsorption onto bacterial surfaces: a universal adsorption edge? Geochim Cosmochim Acta 65:2037–2042

    Article  CAS  Google Scholar 

  • Zachara JM, Kukkadapu RK, Fredrickson JK et al (2002) Biomineralization of poorly crystalline Fe(III) oxides by dissimilatory metal reducing bacteria. Geomicrobiology J 19:179–207

    Article  CAS  Google Scholar 

  • Zavarzina DG, Tourova TP, Kuznetsov BB, Bonch-Osmolovskaya EA, Slobodkin AI (2002) Thermovenabulum ferriorganovorum gen. nov., sp. nov., a novel thermophilic, anaerobic, endospore forming bacterium. Int J Syst Evol Microbiol 52:1737–1743

    CAS  Google Scholar 

  • Zhang D, Wang J, Pan X (2006) Cadmium sorption by EPSs produced by anaerobic sludge under sulfate-reducing conditions. J Hazard Mater B 38:589–593

    Article  CAS  Google Scholar 

  • Zhang D, Wang J, Zhao J, Cai Y, Lin Q (2016) Comparative study of nickel removal from synthetic wastewater by a sulfate-reducing bacteria filter and a zero valent iron—sulfate-reducing bacteria filter. Geomicrobiol J 15:318–324

    Article  CAS  Google Scholar 

  • Zhao S et al (2014) Structural characterization and biosorption of exopolysaccharides from Anoxybacillus sp. R4-33 isolated from radioactive radon hot spring. Appl Biochem Biotechnol 172(5):2732–2746

  • Zheng S, Su J, Wang L, Yao R et al (2014) Selenite reduction by the obligate aerobic bacterium Commamonas testosteronii S44 isolated from a metal-contaminated soil. BMC Microbiology 14(204):1–13

    Google Scholar 

  • Zhou J, Liu S, Xia B, Zhang C, Palumbo AV, Phelps TJ (2001) Molecular characterization and diversity of thermophilic iron-reducing enrichment cultures from deep subsurface environments. J Appl Microbiol 90:96–105

    Article  CAS  Google Scholar 

  • Zillig W, Stetter KO, Wunderl S, Schulz W, Priess H, Scholz I (1980) The Sulfolobus-“Caldariella” group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125:259–269

    Article  CAS  Google Scholar 

  • Zillig W, Yeats S, Holz I, Böck A, Rettenberger M, Gropp F, Simon G (1986) Desulfurolobus ambivalens, gen. nov., sp. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulfur. Syst Appl Microbiol 8:197–203

    Article  CAS  Google Scholar 

  • Zobrist J, Dowdle PR, Davis JA, Oremland RS (2000) Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environ Sci Technol 34:4747–4753

    Article  CAS  Google Scholar 

  • Zulaika E, Sembiring L (2013) Indigenous Mercury resistant bacterial isolates belong to the genus bacillus from Kalimas Surabaya as a potential mercury bioreducer. J Appl Environ Biol Sci 4(1):72–76

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seema Rawat.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranawat, P., Rawat, S. Metal-tolerant thermophiles: metals as electron donors and acceptors, toxicity, tolerance and industrial applications. Environ Sci Pollut Res 25, 4105–4133 (2018). https://doi.org/10.1007/s11356-017-0869-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0869-2

Keywords

Navigation