Skip to main content
Log in

The isolation and initial characterization of mercury resistant chemolithotrophic thermophilic bacteria from mercury rich geothermal springs

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Mercury rich geothermal springs are likely environments where mercury resistance is critical to microbial life and where microbe-mercury interactions may have evolved. Eleven facultative thermophilic and chemolithoautotrophic, thiosulfate oxidizing bacteria were isolated from thiosulfate enrichments of biofilms from mercury rich hot sulfidic springs in Mount Amiata, Italy. Some strains were highly resistant to mercury (≥200 μM HgCl2) regardless of its presence or absence during primary enrichments, and three reduced ionic mercury to its elemental form. The gene encoding for the mercuric reductase enzyme (MerA), was amplified by PCR from seven strains. However, one highly resistant strain did not reduce mercury nor carried merA, suggesting an alternative resistance mechanism. All strains were members of the order Bacillales and were most closely related to previously described thermophiles belonging to the Firmicutes. Phylogenetic analyses clustered the MerA of the isolates in two supported novel nodes within the Firmicutes lineage and a comparison with the 16S rRNA gene tree suggested at least one case of horizontal gene transfer. Overall, the results show that the thermophilic thiosulfate oxidizing isolates were adapted to life in presence of mercury mostly, but not exclusively, by possessing MerA. These findings suggest that reduction of mercury by chemolithotrophic thermophilic bacteria may mobilize mercury from sulfur and iron deposits in geothermal environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Amann RI, Stromley J, Devereux R, Key R, Stahl DA (1992) Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl Environ Microbiol 58:614–623

    PubMed  CAS  Google Scholar 

  • Baldi F, Olson GJ (1987) Effects of cinnabar on pyrite oxidation by Thiobacillus ferrooxidans and cinnabar mobilization by a mercury-resistant strain. Appl Environ Microbiol 53:772–776

    PubMed  CAS  Google Scholar 

  • Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384

    Article  PubMed  CAS  Google Scholar 

  • Barkay T, Turner RR, Rasmussen LD, Kelly CA, Rudd JW (1998) Luminescence facilitated detection of bioavailable mercury in natural waters. Methods Mol Biol 102:231–246

    PubMed  CAS  Google Scholar 

  • Barkay T, Wagner-Döbler I (2005) Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment. Adv Appl Microbiol 57:1–52

    Article  PubMed  CAS  Google Scholar 

  • Barnes HL, Seward TM (1997) Geothermal systems and mercury deposits. In: Barnes HL (eds) Geochemistry of hydrothermal ore deposits. Wiley, New York, pp 699–736

    Google Scholar 

  • Ben-David EA, Holden PJ, Stone DJ, Harch BD, Foster LJ (2004) The use of phospholipid fatty acid analysis to measure impact of acid rock drainage on microbial communities in sediments. Microb Ecol 48:300–315

    Article  PubMed  CAS  Google Scholar 

  • Bogdanova ES, Bass IA, Minakhin LS, Petrova MA, Mindlin SZ, Volodin AA, Kalyaeva ES, Tiedje JM, Hobman JL, Brown NL, Nikiforov VG (1998) Horizontal spread of mer operons among gram-positive bacteria in natural environments. Microbiology 144:609–620

    Article  PubMed  CAS  Google Scholar 

  • Clarkson TW (2002) The three modern faces of mercury. Environ Health Perspect 110(Suppl 1):11–23

    PubMed  CAS  Google Scholar 

  • Craw D (2005) Potential anthropogenic mobilisation of mercury and arsenic from soils on mineralised rocks, Northland, New Zealand. J Environ Manage 74:283–292

    Article  PubMed  CAS  Google Scholar 

  • de Clerck E, Rodriguez-Diaz M, Vanhoutte T, Heyrman J, Logan NA, De Vos P (2004) Anoxybacillus contaminans sp. nov. and Bacillus gelatini sp. nov., isolated from contaminated gelatin batches. Int J Syst Evol Microbiol 54:941–946

    Article  PubMed  CAS  Google Scholar 

  • Dopson M, Baker-Austin C, Koppineedi PR, Bond PL (2003) Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149:1959–1970

    Article  PubMed  CAS  Google Scholar 

  • Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biol Sci 12:543–554

    PubMed  CAS  Google Scholar 

  • Glendinning KJ, Macaskie LE, Brown NL (2005) Mercury tolerance of thermophilic Bacillus sp. and Ureibacillus sp. Biotechnol Lett 27:1657–1662

    Article  PubMed  CAS  Google Scholar 

  • Inoue C, Sugawara K, Shiratori T, Kusano T, Kitagawa Y (1989) Nucleotide sequence of the Thiobacillus ferrooxidans chromosomal gene encoding mercuric reductase. Gene 84:47–54

    Article  PubMed  CAS  Google Scholar 

  • Laddaga RA, Chu L, Misra TK, Silver S (1987) Nucleotide sequence and expression of the mercurial-resistance operon from Staphylococcus aureus plasmid pI258. Proc Natl Acad Sci USA 84:5106–5110

    Article  PubMed  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Chichester, New York, pp 115–175

    Google Scholar 

  • Liebert CA, Hall RM, Summers AO (1999) Transposon Tn21, flagship of the floating genome. Microbiol Mol Biol Rev 63:507–522

    PubMed  CAS  Google Scholar 

  • Loppi S (2001) Environmental distribution of mercury and other trace elements in the geothermal area of Bagnore (Mt. Amiata, Italy). Chemosphere 45:991–995

    Article  PubMed  CAS  Google Scholar 

  • Manachini PL, Fortina MG, Parini C, Craveri R (1985) Bacillus thermoruber sp. nov., nom. rev., a red-pigmented thermophilic bacterium. Int J Syst Bacteriol 35:493–496

    Article  CAS  Google Scholar 

  • Martell AE, Smith RM, Motekaitis RJ (1998) NIST critical stability constants of metal complexes database [NIST Standard Reference Database 46] US Department of Commerce, Gaithersburg

  • Nakamura K, Nakahara H (1988) Simplified X-ray film method for detection of bacterial volatilization of mercury chloride by Escherichia coli. Appl Environ Microbiol 54:2871–2873

    PubMed  CAS  Google Scholar 

  • Ni Chadhain SM, Schaefer JK, Crane S, Zylstra GJ, Barkay T (2006) Analysis of mercuric reductase (merA) gene diversity in an anaerobic mercury-contaminated sediment enrichment. Environ Microbiol 8:1746–1752

    Article  PubMed  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  PubMed  CAS  Google Scholar 

  • Robertson LA, Kuenen JG (1999). The colorless sulfur bacteria, the prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn. Springer, New York

    Google Scholar 

  • Sand W, Gehrke T (2006) Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. Res Microbiol 157:49–56

    Article  PubMed  CAS  Google Scholar 

  • Schecher WD, McAvoy D (1994) MINEQL1: a chemical equilibrium program for personal computers, Version 3.01. Environmental Research Software, Hallowell

  • Schottel J, Mandal A, Clark D, Silver S, Hedges RW (1974) Volatilisation of mercury and organomercurials determined by inducible R-factor systems in enteric bacteria. Nature 251:335–337

    Article  PubMed  CAS  Google Scholar 

  • Silver S, Phung T (2005) A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 32:587–605

    Article  PubMed  CAS  Google Scholar 

  • Simbahan J, Kurth E, Schelert J, Dillman A, Moriyama E, Jovanovich S, Blum P (2005) Community analysis of a mercury hot spring supports occurrence of domain-specific forms of mercuric reductase. Appl Environ Microbiol 71:8836–8845

    Article  PubMed  CAS  Google Scholar 

  • Sørensen SJ, Bailey M, Hansen LH, Kroer N, Wuertz S (2005) Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol 3:700–710

    Article  PubMed  CAS  Google Scholar 

  • Stapleton P, Pike R, Mullany P, Lucas V, Roberts G, Rowbury R, Wilson M, Richards H (2004) Mercuric-resistance genes in gram-positive oral bacteria. FEMS Microbiol Lett 236:213–220

    Article  PubMed  CAS  Google Scholar 

  • Stoffers P, Hannington M, Wright I, Herzig P, de Ronde C (1999) Elemental mercury at submarine hydrothermal vents in the Bay of Plenty, Taupo volcanic zone, New Zealand. Geology 27:931–934

    Article  CAS  Google Scholar 

  • Sugio T, Fuji M, Takeuchi F, Negishi A, Maeda T, Kamimura K (2003) Volatilization of mercury by an iron oxidation enzyme system in a highly mercury-resistant Acidithiobacillus ferrooxidans strain MON-1. Biosci Biotechnol Biochem 67:1537–1544

    Article  PubMed  CAS  Google Scholar 

  • Takami H, Inoue A, Fuji F, Horikoshi K (1997) Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol Lett 152:279–285

    Article  PubMed  CAS  Google Scholar 

  • Takami H, Takaki Y, Chee GJ, Nishi S, Shimamura S, Suzuki H, Matsui S, Uchiyama I (2004) Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilus. Nucleic Acids Res 32:6292–6203

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi F, Iwahori K, Kamimura K, Sugio T (1999) Isolation and some properties of Thiobacillus ferrooxidans strains with differing levels of mercury resistance from natural environments. J Biosci Bioeng 88:387–392

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Varekamp JC, Busecl PR (1984) The speciation of mercury in hydrothermal systems, with applications to ore deposition. Geochim Cosmochim Acta 48:177–185

    Article  CAS  Google Scholar 

  • Vetriani C, Chew YS, Miller SM, Yagi J, Coombs J, Lutz RA, Barkay T (2005) Mercury adaptation among bacteria from a deep-sea hydrothermal vent. Appl Environ Microbiol 71:220–226

    Article  PubMed  CAS  Google Scholar 

  • Voordeckers JW, Starovoytov V, Vetriani C (2005) Caminibacter mediatlanticus sp. nov., a thermophilic, chemolithoautotrophic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 55:773–779

    Article  PubMed  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

  • Widdel F, Kohring GW, Mayer F (1983) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. Arch Microbiol 134:286–294

    Article  CAS  Google Scholar 

  • Yavuz E, Gunes H, Harsa S, Yenidunya AF (2004) Identification of extracellular producing thermophilic bacilli from Balcova (Agamemnon) geothermal site by ITS rDNA RFLP. J Appl Micorbiol 97:810–817

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Meir and Martha Pinjasi for assistance during sample collection and P. Stapleton for advice in the use of primers UmerA-F and UmerA-R. This research was partially funded by the Environmental Remediation Science Program (ERSP), Biological and Environmental Research (BER), US Department of Energy (Grant DE-FG02-99ER62864 to TB) and the National Science Foundation (Grants OCE 03-27353 and MCB 04-56676 to CV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamar Barkay.

Additional information

Communicated by K. Horikoshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatziefthimiou, A.D., Crespo-Medina, M., Wang, Y. et al. The isolation and initial characterization of mercury resistant chemolithotrophic thermophilic bacteria from mercury rich geothermal springs. Extremophiles 11, 469–479 (2007). https://doi.org/10.1007/s00792-007-0065-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-007-0065-2

Keywords

Navigation