Skip to main content
Log in

Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors

  • Short Contribution
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract.

The chromate-reducing ability of Pseudomonas aeruginosa A2Chr was compared in batch culture, with cells entrapped in a dialysis sac, and with cells immobilized in an agarose-alginate film in conjunction with a rotating biological contactor. In all three systems, the maximum Cr(VI) reduction occurred at 10 mg Cr(VI)/l. Whereas at 50 mg Cr(VI)/l concentration, only 16% of the total Cr(VI) was reduced, five spikings with 10 mg chromate/l at 2-h intervals led to 96% reduction of the total input of 50 mg Cr(VI) /l. Thus maximum Cr(VI) reduction was achieved by avoiding Cr(VI) toxicity to the cells by respiking with lower Cr(VI) concentrations. At 10 mg Cr(VI)/l, the pattern of chromate reduction in dialysis-entrapped cells was almost similar to that of batch culture and 86% of the bacterially reduced chromium was retained inside the dialysis sac. In electroplating effluent containing 100 mg Cr(VI)/l, however, the amount of Cr(VI) reduced by the cells immobilized in agarose-alginate biofilm was twice and thrice the amount reduced by batch culture and cells entrapped in a dialysis sac, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Author information

Authors and Affiliations

Authors

Additional information

Electronic Publication

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganguli, .A., Tripathi, .A. Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors. Appl Microbiol Biotechnol 58, 416–420 (2002). https://doi.org/10.1007/s00253-001-0871-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-001-0871-x

Keywords

Navigation