Skip to main content
Log in

An Isotonic Partial Credit Model for Ordering Subjects on the Basis of Their Sum Scores

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

In practice, the sum of the item scores is often used as a basis for comparing subjects. For items that have more than two ordered score categories, only the partial credit model (PCM) and special cases of this model imply that the subjects are stochastically ordered on the common latent variable. However, the PCM is very restrictive with respect to the constraints that it imposes on the data. In this paper, sufficient conditions for the stochastic ordering of subjects by their sum score are obtained. These conditions define the isotonic (nonparametric) PCM model. The isotonic PCM is more flexible than the PCM, which makes it useful for a wider variety of tests. Also, observable properties of the isotonic PCM are derived in the form of inequality constraints. It is shown how to obtain estimates of the score distribution under these constraints by using the Gibbs sampling algorithm. A small simulation study shows that the Bayesian p-values based on the log-likelihood ratio statistic can be used to assess the fit of the isotonic PCM to the data, where model-data fit can be taken as a justification of the use of the sum score to order subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agresti, A. (1990). Categorical data analysis. New York: Wiley.

    Google Scholar 

  • Andersen, E.B. (1973). A goodness of fit test for the Rasch model. Psychometrika, 38, 123–140.

    Article  Google Scholar 

  • Douglas, R., Fienberg, S.E., Lee, M.-L.T., Sampson, A.R., & Whitaker, L.R. (1991). Positive dependence concepts for ordinal contingency tables. In H.W. Block, A.R. Sampson, & T.H. Savits (Eds.), Topics in statistical dependence (pp. 189–202). Hayward: Institute of Mathematical Statistics.

    Google Scholar 

  • Gelman, A., Meng, X.L., & Stern, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica, 6, 733–807.

    Google Scholar 

  • Grayson, D.A. (1988). Two-group classification in latent trait theory: Scores with monotone likelihood ratio. Psychometrika, 53, 383–392.

    Article  Google Scholar 

  • Hemker, B.T. (1996). Unidimensional IRT models for polytomous items, with results for Mokken scale analysis. Unpublished doctoral dissertation, Utrecht University, The Netherlands.

  • Hemker, B.T., Sijtsma, K., Molenaar, I.W., & Junker, B.W. (1996). Polytomous IRT models and monotone likelihood ratio of the total score. Psychometrika, 61, 679–693.

    Article  Google Scholar 

  • Hemker, B.T., Sijtsma, K., Molenaar, I.W., & Junker, B.W. (1997). Stochastic ordering using the latent trait and the sum score in polytomous IRT models. Psychometrika, 62, 331–347.

    Article  Google Scholar 

  • Hoijtink, H. (1998). Constrained latent class analysis using the Gibbs sampler and posterior predictive p-values: Applications to educational testing. Statistica Sinica, 8, 691–711.

    Google Scholar 

  • Hoijtink, H., & Molenaar, I.W. (1997). A multidimensional item response model: Constrained latent class analysis using Gibbs sampler and posterior predictive checks. Psychometrika, 62, 171–189.

    Article  Google Scholar 

  • Holland, P.W., & Rosenbaum, P.R. (1986). Conditional association and unidimensionality in monotone latent variable models. Annals of Statistics, 14, 1523–1543.

    Article  Google Scholar 

  • Huynh, H. (1994). A new proof for monotone likelihood ratio for the sum of independent Bernoulli random variables. Psychometrika, 59, 77–79.

    Article  Google Scholar 

  • Junker, B.W. (1993). Conditional association, essential independence and monotone unidimensional item response models. Annals of Statistics, 21, 1359–1378.

    Article  Google Scholar 

  • Karabatsos, G. (2001). The Rasch model, additive conjoint measurement, and new models of probabilistic measurement theory. Journal of Applied Measurement, 2, 389–423.

    PubMed  Google Scholar 

  • Karabatsos, G., & Sheu, C.-F. (2004). Order-constrained Bayes inference for dichotomous models of unidimensional nonparametric IRT. Applied Psychological Measurement, 28, 110–125.

    Article  Google Scholar 

  • Karlin, S. (1968). Total positivity. Palo Alto: Stanford University Press.

    Google Scholar 

  • Karlin, S., & Rinott, Y. (1980). Classes of orderings of measures and related correlation inequalities. I. Multivariate totally positive distributions. Journal of Multivariate Analysis, 10, 467–498.

    Article  Google Scholar 

  • Laudy, O., & Hoijtink, H. (2007). Bayesian methods for the analysis of inequality constrained contingency tables. Statistical Methods in Medical Research, 16, 123–138.

    Article  PubMed  Google Scholar 

  • Lazarsfeld, P.F., & Henry, N.W. (1968). Latent structure analysis. Boston: Houghton Mifflin.

    Google Scholar 

  • Lehmann, E.L. (1959). Testing statistical hypotheses. New York: Wiley.

    Google Scholar 

  • Ligtvoet, R., Van der Ark, L.A., Bergsma, W.P., & Sijtsma, K. (2011). Polytomous latent scales for the investigation of the ordering of items. Psychometrika, 73, 200–216.

    Article  Google Scholar 

  • Ligtvoet, R., & Vermunt, J.K. (2012). Latent class models for testing monotonicity and invariant item ordering for polytomous items. British Journal of Mathematical & Statistical Psychology, 65, 237–250. doi:10.1111/j.2044-8317.2011.02019.x.

    Article  Google Scholar 

  • Masters, G. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149–174.

    Article  Google Scholar 

  • Meng, X.L. (1994). Posterior predictive p-values. Annals of Statistics, 22, 1142–1160.

    Article  Google Scholar 

  • Mokken, R.J. (1971). A theory and procedure of scale analysis. Berlin: De Gruyter.

    Book  Google Scholar 

  • Molenaar, I.W. (1997). Nonparametric models for polytomous responses. In W.J. van der Linden & R.K. Hambleton (Eds.), Handbook of modern item response theory (pp. 369–380). New York: Springer.

    Google Scholar 

  • Molenaar, I.W., & Sijtsma, K. (2000). User’s manual MSP5 for Windows [Software manual]. Groningen, The Netherlands: IEC ProGAMMA.

  • Muraki, E. (1992). A generalized partial credit model: Applications for an EM algorithm. Applied Psychological Measurement, 16, 159–177.

    Article  Google Scholar 

  • Nadarajah, S., & Kotz, S. (2006). R Programs for computing truncated distributions. Journal of Statistical Software, 16(2), 1–8.

    Google Scholar 

  • R Development Core Team (2009). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org.

  • Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: Nielsen and Lydiche.

    Google Scholar 

  • Samejima, F. (1969). Estimation of latent trait ability using a response pattern of graded scores. Psychometrika Monograph, No. 17.

  • Samejima, F. (1972). A general model for free-response data. Psychometrika Monograph, No. 18.

  • Scheiblechner, H. (1995). Isotonic ordinal probabilistic models (ISOP). Psychometrika, 60, 281–304.

    Article  Google Scholar 

  • Scheiblechner, H. (1999). Additive conjoint isotonic probabilistic models (ADISOP). Psychometrika, 64, 295–316.

    Article  Google Scholar 

  • Scheiblechner, H. (2007). A unified nonparametric IRT model for d-dimensional psychological test data (d-ISOP). Psychometrika, 72, 43–67.

    Article  Google Scholar 

  • Ünlü, A. (2008). A note on monotone likelihood ratio of the total score variable in unidimensional item response theory. British Journal of Mathematical & Statistical Psychology, 61, 179–187.

    Article  Google Scholar 

  • Van der Ark, L.A. (2005). Stochastic ordering of the latent trait by the sum score under various polytomous IRT models. Psychometrika, 70, 283–304.

    Article  Google Scholar 

  • Van der Ark, L.A., & Bergsma, W.P. (2010). A note on stochastic ordering of the latent trait using the sum of polytomous item scores. Psychometrika, 75, 272–279.

    Article  Google Scholar 

  • Van der Ark, L.A., Hemker, B.T., & Sijtsma, K. (2002). Hierarchically related nonparametric IRT models, and practical data analysis methods. In G.A. Marcoulides & I. Moustaki (Eds.), Latent variable and latent structure models (pp. 41–62). Mahwah: Erlbaum.

    Google Scholar 

  • Van Onna, H.J.M. (2002). Bayesian estimation and model selection in ordered latent class models for polytomous items. Psychometrika, 67, 519–538.

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank the anonymous reviewers for their careful reading and the suggestions regarding the outline of the proof and the simulation study. Also, I thank Annemarie Zand-Scholten for commenting on an earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudy Ligtvoet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ligtvoet, R. An Isotonic Partial Credit Model for Ordering Subjects on the Basis of Their Sum Scores. Psychometrika 77, 479–494 (2012). https://doi.org/10.1007/s11336-012-9272-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-012-9272-6

Key words

Navigation