Skip to main content
Log in

Bayesian estimation and model selection in ordered latent class models for polytomous items

  • Articles
  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

In a latent class IRT model in which the latent classes are ordered on one dimension, the class specific response probabilities are subject to inequality constraints. The number of these inequality constraints increase dramatically with the number of response categories per item, if assumptions like monotonicity or double monotonicity of the cumulative category response functions are postulated. A Markov chain Monte Carlo method, the Gibbs sampler, can sample from the multivariate posterior distribution of the parameters under the constraints. Bayesian model selection can be done by posterior predictive checks and Bayes factors. A simulation study is done to evaluate results of the application of these methods to ordered latent class models in three realistic situations. Also, an example of the presented methods is given for existing data with polytomous items. It can be concluded that the Bayesian estimation procedure can handle the inequality constraints on the parameters very well. However, the application of Bayesian model selection methods requires more research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartholomew, D.J., & Tzamourani, P. (1999). The goodness of fit of latent trait models in attitude measurement.Sociological Methods and Research, 27, 525–546.

    Google Scholar 

  • Bayarri, M.J., & Berger, J.O. (2000).P values for composite null models.Journal of the American Statistical Association, 95, 1127–1142.

    Google Scholar 

  • Cavalini, P.M. (1992).It's an ill wind that brings no good: Studies on odour annoyance and the dispersion of odorant concentrations from industries. Groningen: University Press Groningen.

    Google Scholar 

  • Croon, M. (1990). Latent class analysis with ordered latent classes.British Journal of Mathematical and Statistical Psychology, 43, 171–192.

    Google Scholar 

  • Croon, M.A. (1991). Investigating Mokken scalability of dichotomous items by means of ordinal latent class analysis.British Journal of Mathematical and Statistical Psychology, 44, 315–331.

    Google Scholar 

  • Gelfand, A.E., Smith, A.F.M., & Lee, T.M. (1992). Bayesian analysis of constrained parameter and truncated data problems using Gibbs sampling.Journal of the American Statistical Association, 87, 523–532.

    Google Scholar 

  • Gelman, A. (1996a). Inference and monitoring convergence. In W.R. Wilks, S. Richardson, & D.J. Spiegelhalter (Eds.),Markov Chain Monte Carlo in practice. Interdisciplinary statistics (pp. 131–143). London: Chapman & Hall.

    Google Scholar 

  • Gelman, A. (1996b). Bayesian model-building by pure thought: Some principles and examples.Statistica Sinica, 6, 215–232.

    Google Scholar 

  • Gelman, A., Carlin, J.B., Stern, H.S., & Rubin, D.B. (1995).Bayesian data analysis. London: Chapman & Hall.

    Google Scholar 

  • Gelman, A., Meng, X.L., & Stern, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies.Statistica Sinica, 6, 733–807.

    Google Scholar 

  • Heinen, T. (1993).Discrete latent variable models. Tilburg: University Press.

    Google Scholar 

  • Hemker, B.T., Sijtsma, K., Molenaar, I.W., & Junker, B.W. (1996). Polytomous IRT models and monotone likelihood ratio of the total score.Psychometrika, 61, 679–693.

    Google Scholar 

  • Hemker, B.T., Sijtsma, K., Molenaar, I.W., & Junker, B.W. (1997). Stochastic ordering using the latent trait and the some score in polytomous IRT models.Psychometrika, 62, 331–347.

    Google Scholar 

  • Hoijtink, H. (1998). Constrained latent class analysis using the Gibbs sampler and posterior predictivep-values: Applications to educational testing.Statistica Sinica, 8, 691–711.

    Google Scholar 

  • Hoijtink, H., & Molenaar, I.W. (1997). A multidimensional item response model: Constrained latent class analysis using the Gibbs sampler and posterior predictive checks.Psychometrika, 62, 171–189.

    Google Scholar 

  • Kass, R.E., & Raftery, A.E. (1995). Bayes factors.Journal of the American Statistical Association, 90, 773–795.

    Google Scholar 

  • Meng, X.L. (1994). Posterior predictivep-values.The Annals of Statistics, 22, 1142–1160.

    Google Scholar 

  • Mokken, R.J. (1971).A theory and procedure of scale analysis. The Hague: Mouton de Gruyter.

    Google Scholar 

  • Molenaar, I.W., & Sijtsma, K. (2000).User's manual MSP5 for Windows. A program for Mokken scale analysis for polytomous items. Groningen: iec ProGAMMA.

    Google Scholar 

  • Newton, M.A., & Raftery, A.E. (1994). Approximate Bayesian inference with the weighted likelihood bootstrap.Journal of the Royal Statistical Society, Series B, 56, 3–48.

    Google Scholar 

  • Post, W. & Snijders, T.A.B. (1993). Nonparametric unfolding models for dichotomous data.Methodika, 7, 130–156.

    Google Scholar 

  • Reiser, M., & Lin, Y. (1999). A goodness-of-fit test for the latent class model when expected frequencies are small.Sociological Methodology, 29, 81–111.

    Google Scholar 

  • Robins, J.M., van der Vaart, A., Ventura, V. (2000). Asymptotic distributions ofP values in composite null models.Journal of the American Statistical Association, 95, 1143–1156.

    Google Scholar 

  • Rubin, D.B., & Stern, H.S. (1994). Testing in latent class models using a posterior predictive check distribution. In A. von Eye, & C.C. Clogg (Eds.),Latent variables analysis. Applications for developmental research (pp. 420–438). Thousand Oaks: Sage.

    Google Scholar 

  • Sijtsma, K. (1998). Methodology review: Nonparametric IRT approaches to the analysis of dichotomous item scores.Applied Psychological Measurement, 22, 3–31.

    Google Scholar 

  • Sijtsma, K., & Hemker, B.T. (1998). Nonparametric polytomous IRT models for invariant item ordering, with results for parametric models.Psychometrika, 63, 183–200.

    Google Scholar 

  • Stephens, M. (2000). Bayesian analysis of mixture models with an unknown number of components. An alternative to reversible jump methods.The Annals of Statistics, 28, 40–74.

    Google Scholar 

  • Stout, W., Habing, B., Douglas, J., Kim, H.R., Roussos, L., & Zhang, J. (1996). Conditional covariance-based nonparametric multidimensionality assessment.Applied Psychological Measurement, 20, 331–354.

    Google Scholar 

  • Tanner, M.A., & Wong, W.H. (1987). The calculation of posterior distributions by data augmentation.Journal of the American Statistical Association, 82, 528–540.

    Google Scholar 

  • van Schuur, W.H. (1993). Nonparametric unidimensional unfolding for multicategory data,Political Analysis, 4, 41–74.

    Google Scholar 

  • Vermunt, J.K. (1997).LEM: A general program for the analysis of categorical data. Tilburg: Tilburg University.

    Google Scholar 

  • Vermunt, J.K. (1999). A general class of nonparametric models for ordinal categorical data.Sociological Methodology, 29, 187–223.

    Google Scholar 

  • von Davier, M. (1997). Bootstrapping goodness-of-fit statistics for sparse categorical data—Results of a Monte Carlo study.Methods of Psychological Research Online, 2, 29–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. H. van Onna.

Additional information

This research was supported by the Netherlands Organization for Scientific Research (NWO), grant number 400-20-027. I would like to thank Ivo Molenaar, Herbert Hoijtink, Anne Boomsma, Marijtje van Duijn and the reviewers for their useful comments. I would also like to thank Sandra van Abswoude for her help with DETECT.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Onna, M.J.H. Bayesian estimation and model selection in ordered latent class models for polytomous items. Psychometrika 67, 519–538 (2002). https://doi.org/10.1007/BF02295129

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02295129

Key words

Navigation