Skip to main content
Log in

High density SNP mapping and QTL analysis for fruit quality characteristics in peach (Prunus persica L.)

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Single nucleotide polymorphisms (SNPs) were used to construct an integrated SNP linkage map of peach (Prunus persica (L.) Batsch). A set of 1,536 SNPs were evaluated with the GoldenGate® Genotyping assay in two mapping populations, Pop-DF, and Pop-DG. After genotyping and filtering, a final set of 1,400 high quality SNPs in Pop-DF and 962 in Pop-DG with full map coverage were selected and used to construct two linkage maps with JoinMap®4.0. The Pop-DF map covered 422 cM of the peach genome and included 1,037 SNP markers, and Pop-DG map covered 369 cM and included 738 SNPs. A consensus map was constructed with 588 SNP markers placed in eight linkage groups (n = 8 for peach), with map coverage of 454 cM and an average distance of 0.81 cM/marker site. Placements of SNPs on the “peach v1.0” physical map were compared to placement on the linkage maps and several differences were observed. Using the SNP linkage map of Pop-DG and phenotypic data collected for three harvest seasons, a QTL analysis for fruit quality traits and chilling injury symptoms was carried out with the mapped SNPs. Significant QTL effects were detected for mealiness (M) and flesh bleeding (FBL) QTLs on linkage group 4 and flesh browning (FBr) on linkage group 5. This study represents one of the first examples of QTL detection for quality traits and chilling injury symptoms using a high-density SNP map in a single peach F1 family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbott AG, Rajapakse S, Sosinski B, Lu ZX, Sossey-Alaoui K, Gannavarapu M, Reighard G, Ballard RE, Baird WV, Scorza R, Callahan A (1998) Construction of saturated linkage maps of peach crosses segregating for characters controlling fruit quality, tree architecture and pest resistance. Acta Horticulturae 465:41–49

    CAS  Google Scholar 

  • Abbott AG, Georgi L, Inigo M, Sosinski B, Yvergniaux D, Wang Y, Blenda A, Reighard G (2002) Peach: the model genome for Rosaceae. Acta Horticulturae 575:145–155

    CAS  Google Scholar 

  • Abbott AG, Arús P, Scorza R (2007) Peach. In: Kole C (ed) Fruits and nuts, vol 4. Genome mapping and molecular breeding in Plants. Springer, Berlin, Heidelberg, pp 137–156. doi:10.1007/978-3-540-34533-6_5

    Google Scholar 

  • Abbott AG, Arús P, Scorza R (2008) Genetic engineering and genomics. In: Desmond RL, Bassi D (eds) The peach: botany, production and uses. CABI, UK, pp 85–105

    Chapter  Google Scholar 

  • Ahmad R, Parfitt D, Fass J, Ogundiwin E, Dhingra A, Gradziel T, Lin D, Joshi N, Martínez-García PJ, Crisosto C (2011) Whole genome sequencing of peach (Prunus persica L.) for SNP identification and selection. BMC Genom 12:569. doi10.1186/1471-2164-12-569

    Google Scholar 

  • Akhunov E, Nicolet C, Dvorak J (2009) Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay. Theor Appl Genet 119(3):507–517. doi:10.1007/s00122-009-1059-5

    Article  PubMed  CAS  Google Scholar 

  • Aranzana MJ, Garcia-Mas J, Carbo J, Arús P (2002) Development and variability analysis of microsatellite markers in peach. Plant Breed 121(1):87–92

    Article  CAS  Google Scholar 

  • Aranzana MJ, Kim S, Zhao KY, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo C, Tang CL, Toomajian C, Traw B, Zheng HG, Bergelson J, Dean C, Marjoram P, Nordborg M (2005) Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet 1(5):531–539. doi:10.1371/journal.pgen.0010060

    Article  CAS  Google Scholar 

  • Aranzana MJ, Abbassi EK, Howad W, Arús P (2010) Genetic variation, population structure and linkage disequilibrium in peach commercial varietes. BMC Genet 11:69

    Article  PubMed  Google Scholar 

  • Bailey JS, French AP (1949) The inheritance of certain fruit and foliage characters in the peach. Mass Agr Exp Sta Bul 452

  • Ball A, Stapley J, Dawson D, Birkhead T, Burke T, Slate J (2010) A comparison of SNPs and microsatellites as linkage mapping markers: lessons from the zebra finch (Taeniopygia guttata). BMC Genom 11(1):218

    Article  Google Scholar 

  • Batley J, Edwards D (2009) Mining for SNPs and SSRs using SNPServer, dbSNP and SSR taxonomy tree. Meth Mol Biol 537:303–321. doi:10.1007/978-1-59745-251-9_15

    Article  CAS  Google Scholar 

  • Blenda AV, Verde I, Georgi LL, Reighard GL, Forrest SD, Munoz-Torres M, Baird WV, Abbott AG (2007) Construction of a genetic linkage map and identification of molecular markers in peach rootstocks for response to peach tree short life syndrome. Tree Genet Genomes 3(4):341–350. doi:10.1007/S11295-006-0074-9

    Article  Google Scholar 

  • Bliss FA, Arulsekar S, Foolad MR, Becerra V, Gillen AM, Warburton ML, Dandekar AM, Kocsisne GM, Mydin KK (2002) An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome 45(3):520–529. doi:10.1139/G02-011

    Article  PubMed  CAS  Google Scholar 

  • Chaparro JX, Werner DJ, O’Malley D, Sederoff RR (1994) Targeted mapping and linkage analysis of morphological isozyme, and RAPD markers in peach. Theor Appl Genet 87(7):805–815. doi:10.1007/bf00221132

    Article  CAS  Google Scholar 

  • Colinas J, Birnbaum K, Benfey PN (2002) Using cauliflower to find conserved non-coding regions in Arabidopsis. Plant Physiol 129:451–454

    Article  PubMed  CAS  Google Scholar 

  • Crisosto CH, Mitchell FG, Johnson S (1995) Factors in fresh market stone fruit quality. Postharvest News Inform 6(2):17–21

    Google Scholar 

  • Crisosto CH, Mitchell FG, Ju ZG (1999) Susceptibility to chilling injury of peach, nectarine, and plum cultivars grown in California. HortSci 34(6):1116–1118

    Google Scholar 

  • Crisosto CH, Crisosto GM, Day KR (2008) Market life update for peach, nectarine, and plum cultivars grown in California. Adv Hortic Sci 22(3):201–204

    Google Scholar 

  • Dettori MT, Quarta R, Verde I (2001) A peach linkage map integrating RFLPs, SSRs, RAPDs, and morphological markers. Genome 44(5):783–790

    Article  PubMed  CAS  Google Scholar 

  • Dirlewanger E, Pronier V, Parvery C, Rothan C, Guye A, Monet R (1998) Genetic linkage map of peach [Prunus persica (L.) Batsch] using morphological and molecular markers. Theor Appl Genet 97(5–6):888–895

    Article  CAS  Google Scholar 

  • Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batsch). Theor Appl Genet 98(1):18–31

    Article  CAS  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, Arús P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101(26):9891–9896. doi:10.1073/Pnas.0307937101

    Article  PubMed  CAS  Google Scholar 

  • Dirlewanger E, Cosson P, Boudehri K, Renaud C, Capdeville G, Tauzin Y, Laigret F, Moing A (2007) Development of a second-generation genetic linkage map for peach [Prunus persica (L.) Batsch] and characterization of morphological traits affecting flower and fruit. Tree Genet Genomes 3(1):1–13. doi:10.1007/S11295-006-0053-1

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bullet 19:11–15

    Google Scholar 

  • Fan JB, Oliphant A, Shen R, Kermani BG, Garcia F, Gunderson KL, Hansen M, Steemers F, Butler SL, Deloukas P, Galver L, Hunt S, McBride C, Bibikova M, Rubano T, Chen J, Wickham E, Doucet D, Chang W, Campbell D, Zhang B, Kruglyak S, Bentley D, Haas J, Rigault P, Zhou L, Stuelpnagel J, Chee MS (2003) Highly parallel SNP genotyping. Cold Spring Harb Sym 68:69–78

    Article  CAS  Google Scholar 

  • Foolad MR, Arulsekar S, Becerra V, Bliss FA (1995) A genetic map of Prunus based on an interspecific cross between peach and almond. Theor Appl Genet 91(2):262–269

    Article  CAS  Google Scholar 

  • Foulongne M, Pascal T, Arús P, Kervella J (2003) The potential of Prunus davidiana for introgression into peach [Prunus persica (L.) Batsch] assessed by comparative mapping. Theor Appl Genet 107(2):227–238. doi:10.1007/S00122-003-1238-8

    Article  PubMed  CAS  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic-linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross-mapping strategy and RAPD markers. Genetics 137(4):1121–1137

    PubMed  CAS  Google Scholar 

  • Grattapaglia D, Silva OB, Kirst M, de Lima BM, Faria DA, Pappas GJ (2011) High-throughput SNP genotyping in the highly heterozygous genome of Eucalyptus: assay success, polymorphism and transferability across species. BMC Plant Biol 11:65. doi:10.1186/1471-2229-11-65

  • Hyten DL, Song Q, Choi IY, Yoon MS, Specht JE, Matukumalli LK, Nelson RL, Shoemaker RC, Young ND, Cregan PB (2008) High-throughput genotyping with the GoldenGate assay in the complex genome of soybean. Theor Appl Genet 116(7):945–952. doi:10.1007/s00122-008-0726-2

    Article  PubMed  CAS  Google Scholar 

  • International HapMap Consortium, Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM, Pasternak S, Wheeler DA, Willis TD, Yu FL, Yang HM, Zeng CQ, Gao Y, Hu HR, Hu WT, Li CH, Lin W, Liu SQ, Pan H, Tang XL, Wang J, Wang W, Yu J, Zhang B, Zhang QR, Zhao HB, Zhao H, Zhou J, Gabriel SB, Barry R, Blumenstiel B, Camargo A, Defelice M, Faggart M, Goyette M, Gupta S, Moore J, Nguyen H, Onofrio RC, Parkin M, Roy J, Stahl E, Winchester E, Ziaugra L, Altshuler D, Shen Y, Yao ZJ, Huang W, Chu X, He YG, Jin L, Liu YF, Shen YY, Sun WW, Wang HF, Wang Y, Wang Y, Xiong XY, Xu L, Waye MMY, Tsui SKW, Wong JTF, Galver LM, Fan JB, Gunderson K, Murray SS, Oliphant AR, Chee MS, Montpetit A, Chagnon F, Ferretti V, Leboeuf M, Olivier JF, Phillips MS, Roumy S, Sallee C, Verner A, Hudson TJ, Kwok PY, Cai DM, Koboldt DC, Miller RD, Pawlikowska L, Taillon-Miller P, Xiao M, Tsui LC, Mak W, Song YQ, Tam PKH, Nakamura Y, Kawaguchi T, Kitamoto T, Morizono T, Nagashima A, Ohnishi Y, Sekine A, Tanaka T, Tsunoda T, Deloukas P, Bird CP, Delgado M, Dermitzakis ET, Gwilliam R, Hunt S, Morrison J, Powell D, Stranger BE, Whittaker P, Bentley DR, Daly MJ, de Bakker PIW, Barrett J, Chretien YR, Maller J, McCarroll S, Patterson N, Pe’er I, Price A, Purcell S, Richter DJ, Sabeti P, Saxena R, Schaffner SF, Sham PC, Varilly P, Altshuler D, Stein LD, Krishnan L, Smith AV, Tello-Ruiz MK, Thorisson GA, Chakravarti A, Chen PE, Cutler DJ, Kashuk CS, Lin S, Abecasis GR, Guan WH, Li Y, Munro HM, Qin ZHS, Thomas DJ, McVean G, Auton A, Bottolo L, Cardin N, Eyheramendy S, Freeman C, Marchini J, Myers S, Spencer C, Stephens M, Donnelly P, Cardon LR, Clarke G, Evans DM, Morris AP, Weir BS, Tsunoda T, Johnson TA, Mullikin JC, Sherry ST, Feolo M, Skol A (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449(7164):851–861. doi:10.1038/Nature06258

    Article  PubMed  CAS  Google Scholar 

  • Jauregui B, de Vicente MC, Messeguer R, Felipe A, Bonnet A, Salesses G, Arús P (2001) A reciprocal translocation between ‘Garfi’ almond and ‘Nemared’ peach. Theor Appl Genet 102(8):1169–1176

    Article  CAS  Google Scholar 

  • Jones E, Chu W-C, Ayele M, Ho J, Bruggeman E, Yourstone K, Rafalski A, Smith O, McMullen M, Bezawada C, Warren J, Babayev J, Basu S, Smith S (2009) Development of single nucleotide polymorphism (SNP) markers for use in commercial maize (<i>Zea mays</i> L.) germplasm. Mol Breeding 24(2):165–176. doi:10.1007/s11032-009-9281-z

    Article  CAS  Google Scholar 

  • Joobeur T, Viruel MA, Vicente MCd, Jauregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I, Quarta R, Dirlewanger E, Arús P (1998) Construction of a saturated linkage map for Prunus using an almond × peach F2 progeny. Theor Appl Genet 97(7):1034–1041

    Article  CAS  Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugenic 12:172–175

    Article  Google Scholar 

  • Lehman EL (1975) Nonparametrics. McGraw-Hill, New York

  • Lu ZX, Sosinski B, Reighard GL, Baird WV, Abbott AG (1998) Construction of a genetic linkage map and identification of AFLP markers for resistance to root-knot nematodes in peach rootstocks. Genome 41(2):199–207

    Article  CAS  Google Scholar 

  • Lurie S, Crisosto CH (2005) Chilling injury in peach and nectarine. Postharvest Biol Technol 37(3):195–208. doi:10.1016/J.Postharvbio.2005.04.012

    Article  Google Scholar 

  • Malhi RS, Sickler B, Lin DW, Satkoski J, Tito RY, George D, Kanthaswamy S, Smith DG (2007) MamuSNP: a resource for rhesus macaque (Macaca mulatta) genomics. PLoS ONE 2(5):e438. doi:10.1371/journal.pone.0000438

    Article  Google Scholar 

  • Martínez-García PJ, Cameron P, Parfitt D, Ogundiwin E, Fresnedo-Ramírez J, Dandekar A, Gradziel T, Crisosto C (2012) Influence of year and genetic factors on chilling injury susceptibility in peach (Prunus persica (L.) Batsch). Euphytica 185(2):267–280

    Article  Google Scholar 

  • Ogundiwin EA, Peace CP, Gradziel TM, Dandekar AM, Bliss FA, Crisosto CH (2007) Molecular genetic dissection of chilling injury in peach fruit. Acta Horticulturae 738:633–638

    Google Scholar 

  • Ogundiwin EA, Marti C, Forment J, Pons C, Granell A, Gradziel TM, Peace CP, Crisosto CH (2008) Development of ChillPeach genomic tools and identification of cold-responsive genes in peach fruit. Plant Mol Biol 68(4–5):379–397. doi:10.1007/s11103-008-9378-5

    Article  PubMed  CAS  Google Scholar 

  • Ogundiwin EA, Peace CP, Gradziel TM, Parfitt DE, Bliss FA, Crisosto CH (2009) A fruit quality gene map of Prunus. BMC Genom 10:587. doi:10.1186/1471-2164-10-587

    Article  Google Scholar 

  • Peace C, Norelli JL (2009) Genomics approaches to crop improvement in the Rosaceae. In: Kevin M. Folta, Gardiner SE (eds) Genetics and genomics of Rosaceae. pp 19–53

  • Peace CP, Ahmad R, Gradziel TM, Dandekar AM, Crisosto CH (2004) The use of molecular genetics to improve peach and nectarine post-storage quality. Acta Horticulturae 682:403–415

    Google Scholar 

  • Peace CP, Crisosto CH, Gradziel TM (2005) Endopolygalacturonase: a candidate gene for freestone and melting flesh in peach. Mol Breeding 16(1):21–31. doi:10.1007/S11032-005-0828-3

    Article  CAS  Google Scholar 

  • Quarta R, Dettori MT, Verde I, Gentile A, Broda Z (1998) Genetic analysis of agronomic traits and genetic linkage mapping in a BC1 peach population using RFLPs and RAPDs. Acta Horticulturae 465:51–59

    CAS  Google Scholar 

  • Quarta R, Dettori MT, Sartori A, Verde I (2000) Genetic linkage map and QTL analysis in peach. Acta Horticulturae 521:233–241

    CAS  Google Scholar 

  • Rajapakse S, Belthoff LE, He G, Estager AE, Scorza R, Verde I, Ballard RE, Baird WV, Callahan A, Monet R, Abbott AG (1995) Genetic linkage mapping in peach using morphological, RFLP and RAPD markers. Theor Appl Genet 90(3–4):503–510

    CAS  Google Scholar 

  • Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF, Graner A, Close TJ, Waugh R (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci USA 103(49):18656–18661

    Article  PubMed  CAS  Google Scholar 

  • Shirasawa K, Isobe S, Hirakawa H, Asamizu E, Fukuoka H, Just D, Rothan C, Sasamoto S, Fujishiro T, Kishida Y, Kohara M, Tsuruoka H, Wada T, Nakamura Y, Sato S, Tabata S (2010) SNP discovery and linkage map construction in cultivated tomato. DNA Res 17(6):381–391. doi:10.1093/dnares/dsq024

    Article  PubMed  CAS  Google Scholar 

  • Shimada T, Yamamoto T, Hayama H, Yamaguchi M, Hayashi T (2000) A genetic linkage map constructed by using an intraspecific cross between peach cultivars. J Japan Soc Hort Sci 69:536–542

    Google Scholar 

  • Shulaev V, Korban SS, Sosinski B, Abbott AG, Aldwinckle HS, Folta KM, Iezzoni A, Main D, Arús P, Dandekar AM, Lewers K, Brown SK, Davis TM, Gardiner SE, Potter D, Veilleux RE (2008) Multiple models for Rosaceae genomics. Plant Physiol 147(3):985–1003. doi:10.1104/pp. 107.115618

    Article  PubMed  CAS  Google Scholar 

  • Stam P (1993) Construction of integrated genetic-linkage maps by means of a new computer package—Joinmap. Plant J 3(5):739–744

    Article  CAS  Google Scholar 

  • Van Ooijen JW (2004) MapQTL® 5, Software for the mapping of quantitative trait loci in experimental populations. Kyazma, B.V, Wageningen

    Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap® 4, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Verde I, Lauria M, Dettori MT, Vendramin E, Balconi C, Micali S, Wang Y, Marrazzo MT, Cipriani G, Hartings H, Testolin R, Abbott AG, Motto M, Quarta R (2005) Microsatellite and AFLP markers in the Prunus persica [L. (Batsch)] × P. ferganensis BC1 linkage map: saturation and coverage improvement. Theor Appl Genet 111(6):1013–1021. doi:10.1007/s00122-005-0006-3

    Article  Google Scholar 

  • Verde I, Bassil N, Scalabrin S, Gilmore B, Lawley CT, Gasic K, Micheletti D, Rosyara UR, Cattonaro F, Vendramin E, Main D, Aramini V, Blas AL, Mocker TC, Bryan DW, Wilhelm L, Troggio M, Sosinski B, Aranzana MJ, Arus P, Iezzoni A, Morgante M, Peace C (2012) Development and evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm. PLoS ONE 7(4):e35668. doi:10.1371/journal.pone.0035668

    Article  PubMed  CAS  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    Article  PubMed  CAS  Google Scholar 

  • Wong WS, Nielsen R (2004) Detecting selection in noncoding regions of nucleotide sequences. Genetics 167(2):949–958

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Shimada T, Imai T, Yaegaki H, Haji T, Matsuta N, Yamaguchi M, Hayashi T (2001) Characterization of morphological traits based on a genetic linkage map in peach. Breed Sci 51(4):271–278. doi:10.1270/jsbbs.51.271

    Article  CAS  Google Scholar 

  • Yamamoto T, Yamaguchi M, Hayashi T (2005) An integrated genetic linkage map of peach by SSR, STS, AFLP and RAPD. J Japanese Soc Horticultural Sci 74(3):204–213

    Article  CAS  Google Scholar 

  • Yu H, Xie W, Wang J, Xing Y, Xu C, Li X, Xiao J, Zhang Q (2011) Gains in QTL detection using an ultra-high density snp map based on population sequencing relative to traditional RFLP/SSR markers. PLoS ONE 6(3):e17595. doi:10.1371/journal.pone.0017595

    Article  PubMed  CAS  Google Scholar 

  • Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, Nordborg M (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3(1):e4. doi:10.1371/journal.pgen.0030004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the assistance of DNA Technologies Core at the University of California, Davis as well as the support of the National Research Initiative of USDA’s National Institute of Food and Agriculture (NIFA) grant # 2008-35300-04432 and US-Israel Bi-national Agriculture Research and Development Fund (BARD) Grant no. US-4027-07 for provided financial support to this project, as well as UC Davis, UC Agricultural Experiment Station and USDA-CREES (Hatch Experiment Station funding). We would especially like to thank Maria J. Truco from UC Davis Genome Center for helpful comments on JoinMap®4.0, Jonathan Fresnedo-Ramírez, PhD student at UC Davis, for his collaboration in data processing and we gratefully, acknowledge Dr. Cameron Peace for his contributions to our earlier discussion of potential traits for peach marker assistance selection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro J. Martínez-García.

Additional information

Communicated by A. Abbott

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 920 kb)

ESM 2

(XLS 664 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-García, P.J., Parfitt, D.E., Ogundiwin, E.A. et al. High density SNP mapping and QTL analysis for fruit quality characteristics in peach (Prunus persica L.). Tree Genetics & Genomes 9, 19–36 (2013). https://doi.org/10.1007/s11295-012-0522-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-012-0522-7

Keywords

Navigation